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PREFACE

There are a vast number of detailed and comprehensive
histories, both of general science and of special departments
of science. Most of these are admirable for the scientific
reader, but the layman sometimes cannot see the wood for
the trees. I have felt no ambition (nor competence) to add
to their number, but have thought I might usefully try to
describe the main lines of advance of physical science, in-
cluding astronomy and mathematics but excluding all points
and side-issues, in language non-technical enough to be under-
stood by readers who have no scientific attamments or
knowledge.

I hope that such a book may prove of interest to the general
educated reader, perhaps also to those who are beginning the
study of physics, and possibly to students of other subjects
who wish to know something of how physical science has
grown, what it has done, and what it can do.

J. H.J.
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CHAPTER 1

THE REMOTE BEGINNINGS
(5000-600 B.C.)

WE look on helpless while our material civilisation carries us
at breakneck speed to an end which no man can foresee or
even conjecture. And the speed for ever increases. The last
hundred years have seen more change than a thousand years
of the Roman Empire, more than a hundred thousand years
of the stone age. This change has resulted in large part
from the applications of physical science which, through the
use of steam, electricity and petrol, and by way of the various
industrial arts, now affects almost every moment of our
existences. Its use in medicine and surgery may save our lives;
its use in warfare may involve us in utter ruination. Inits more
abstract aspects, it has exerted a powerful influence on our
philosophies, our religions, and our general outlook on life.

The present book aspires to tell the story of how physical
science has grown, and to trace out the steps by which it has
attained to its present power and importance. To do this fully
we ought to go back to the dim ages when there was no
physical science, to the times before our cave-dwelling an-
cestry had begun to wonder why the night followed the day,
why fire consumed and why water ran downbhill.

This we cannot do. The early history of our race is hidden
in the mists of the past, and the facts we should most like to
know about its early days elude our search. We do not know,
and probably never shall know, the people or peoples who first
found that fire could be generated by friction, or first dis-
covered the principles of the wheel, the sail and the lever.
But we still have with us the implements and weapons that
primitive man left behind him on the floors of his huts and
caves, or buried with his dead; the pyramids of Egypt and
the contents of their tombs; the buildings, the drawings and

JGPS I



2 THE REMOTE BEGINNINGS

the domestic utensils of Susa, Erech, Ur and Knossos. From
such fragmentary survivals the archaeologist can reconstruct
something of the lives of these early peoples, and he finds
that science of a primitive kind played its part in them.

The earliest evidence of any systematic interest in science
comes from the civilisations which existed in the river-basins
of the Euphrates and the Nile in the fourth and fifth millennia
before the Christian era. Man was still in the ‘neolithic’ or
new-stone age, but was about to enter the ‘bronze’ age* by
learning how to harden his all-too-soft copper with an ad-
mixture of tin, and how to work the resulting alloy into tools
and weapons. Hisartistic development at this time was well in
advance of his scientific development, for he was already
producing sculpture, pottery and jewellery, all of which
showed skill of a high order.

The two civilisations just mentioned were geographically
distinct, but can hardly have been entirely unrelated, since
their cultures, their arts, and even their religions show certain
features in common. A large mass of evidence' suggests that,
sometime before 5000 B.C., a peaceful, artistic and highly
talented race left their homes somewhere in central Asia and
descended into Mesopotamia—the land ‘between the rivers’
Euphrates and Tigris, which is sometimes called the cradle
of the human race, but might more accurately be described
as the cradle of human civilisation. Mixing with the native
races, they produced a new people, the Sumerians, who
carried civilisation to a higher level than any of the constituent
races had ever attained. They had considerable engineering
skill, as is shown by the irrigation system they established in
Lower Mesopotamia, probably in the fifth millennium B.C., as
well as by their great temples and palaces. Even in the fifth
millennium B.c., their craftsmen were already using the

. * Bronze seems first to have been used in Crete, in about 3800 B.C., and
in Egypt in the fifth dynasty (about 2800 B.C., or possibly earlier; all dates
in this dim distant period are highly conjectural).

t Cambridge Ancient History, vol. 1, chap. x-xi1.
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potter’s wheel to make fine pottery, which they ornamented
with a lustrous black paint, made by mixing brown haematite
with an alkali salt and potassium. Graves at Ur which date
from about 3500 B.C. have yielded real art treasures of the
finest workmanship, in gold and silver, copper and shell.

Some of the invaders stayed in Mesopotamia, but others
seem to have passed on to Egypt, carrying a certain Sumerian
influence with them. Here too a high level of civilisation was
soon reached, as is shown by the very scientific determination
of the length of the astronomical year. The Egyptians had
taken their civil year to be exactly 365 days—12 months of
30 days each, together with 5 extra sacred or ‘heavenly’
days. But as the astronomical year, the precise period of the
earth’s revolution round the sun, contains rather more than
365 days, the two years did not keep exactly in step, and
yearly natural events, such as the flooding of the Nile,
marched steadily through the civil calendar. These floodings
did not recur with sufficient regularity to fix the exact length
of the astronomical year, and the Egyptians had to look for
a more precise clock.

They found it in the risings of the stars in the east. Every
star rises a few minutes earlier each day than it did the day
before, so that every morning new stars can be seen which
had previously been lost in the glare of the already risen sun.
The day on which the star Sothis (our Sirius) first became
visible was found to coincide very approximately with the
beginnings of the Nile floods, and formed a sort of landmark
which recurred every astronomical year. Here was a precise
astronomical clock which ticked exact astronomical years.
Observation showed that the first visible rising of Sothis
advanced through the civil year at the rate of one day every
four years, so that the astronomical year was seen to consist
of 3654 days, and the first visible rising of a star would return
to its original place in the civil calendar after 1461 years. This
period the Egyptians called the ‘Sothic Cycle’. A new cycle
is known to have commenced in A.p. 139, whence it is easy

I-2



4 THE REMOTE BEGINNINGS

to calculate when the earlier cycles commenced. It seems
likely that the Egyptians started their calendar with the cycle
which commenced in about 4240 B.c., so that even in this
early age, they had obtained an accurate knowledge of the
length of the year through really scientific observation.

Before the beginning of the first dynasty (probably about
3400 B.C., but possibly much earlier), Egyptian artificers had
been producing skilled work in copper, gold, alabaster and
ivory. They had discovered that they could produce a
decorative glaze by heating sand with potash or soda and a
metallic oxide, and knew that they could colour this blue
by adding a salt of copper to the melt.

They were already using writing materials—pens, ink and
paper—and were employing an alphabet and a definite
numerical system (p. 10, below). With these they kept a
record of current events, including measures of the height
reached by the Nile at its successive floodings. But perhaps the
most striking evidence of their culture is the Great Pyramid of
Gizeh, which was probably built about 2goo B.c. Its base is
a perfect square, the sides of which run so exactly north-south
and east-west that even the marking it out on the sands of the
desert was no small achievement. Still more remarkable is
the structure which stands on this base. Its faces are all
perfectly plane—or were before their outer casings had been
removed—and all have exactly the same slope of 51° 50", Its
‘bricks’ are 2}-ton slabs of stone, fitted together so exactly that
it is oftenimpossible toinsert the blade of a knife between them.
The King’s chamber, at the centre of the structure, is roofed by
56 slabs of 54 tons each, the placing of which must have called
for geometrical and engineering skill of a very high order.

Farther to the east lay India and China, which certainly
had highly developed civilisations 3000 years before Christ,
and possibly highly developed sciences as well. The Chinese
kept records of the appearance of comets from 2296 B.C. on,
and the Shu Chang, a collection of documents of the same
period, tells of the Emperor Yao ordering records to be kept
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of the dates of the longest and shortest days and of the
equinoxes when the days and nights were equal in length.
They may even have known how to predict eclipses at this
time, for we read of two astronomers being put to death for
having failed to do so. ‘The blind musician has drummed,
the mandarins have mounted their horses, the people have
flocked together. At this time Hi and Ho, like wooden figures,
have seen nothing, heard nothing and, by their neglect to
calculate and observe the movements of the stars, have
incurred the penalty of death.’

This suggests that astronomy must have been in a fairly
advanced state in China, and it may have been equally so in
India; we do not know. Fortunately, the question is not very
important for our present inquiry, which is less concerned
with the sowing of the seed than with the fruiting of the tree.
Our main study will not be the origin of physical science, but
its growth, and this hardly got under way until the sixth
century B.C. Then it started in Ionian Greece, the ragged
fringe of coastline and islands which forms the westerly edge
of Asia Minor, and gradually spread from here, first to the
Greek mainland and thence to the rest of Europe.

Greece was still a new civilisation. To its east lay the mature
civilisations of China, India, Persia, Mesopotamia, Phoenicia,
Crete and LEgypt; to its west lay lands still untouched by
civilisation—the wild, barbaric lands of the setting sun.
Science, like the rest of civilisation, dawned on these lands
from the east. Ideas and knowledge began to flow from the
old civilisations of the east to the new civilisations which were
springing up in the west, the flow being fostered by trade and
occasionally expedited by colonisation or military conquest.
India and China contributed to western science only through
the intermediary of the near east, so that we shall not go far
wrong if we disregard these remoter eastern civilisations and
confine our attention to the nearer which formed direct
stepping-stones into Europe. Foremost among these were
Mesopotamia (or Babylonia, as we ought to designate it by
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now), Egypt and Phoenicia; let us look at the contributions
which these civilisations were able to make by the sixth
century B.C.
BABYLONIA

One of the greatest scientific achievements of the Babylonians
was their numerical system and method of reckoning. Like
most primitive peoples, they first used a simple decimal
system—i.e. they counted by tens—probably, as Aristotle
suggests,* because the human body has ten digits.

But, as many peoples have found, a decimal system is not
ideally convenient. It has often been remarked that arith-
metic might have been much simpler if men had possessed
twelve fingers instead of ten. Then we should probably have
counted by twelves and used a duodecimal system. As
12 can be exactly divided by 2, 3, 4 and 6, this has the
advantage that awkward fractions are less likely to appear—
such as 33} 9%, and 6-25 which appear in the decimal system
because 10 cannot be divided by 3 or 4. Yet even a duo-
decimal system is not perfect, since 12 cannot be divided by 5.
The later Babylonians tried to combine the advantages of both
systems by using a sexagesimal system, in which the larger
unit consisted of 60 smaller units; and 60 can be divided
exactly by no fewer than ten factors—2, 3, 4, s, 0, 10, 12, 15,
20 and 30. They employed this system in tables which date
back to about 2000 B.c. It has proved so convenient in
practice that it still survives in the 60 minutes of the hour, and
the 60 seconds of the minute, as well as in the corresponding
subdivisions of angles. d

The Babylonians combined this sexagesimal system with a
scheme of notation which was ‘positional’ in the sense that
the value of a symbol depended on the place it occupied in a
number, an advantage which was conspicuously and dis-

* In his Problems he asks: ‘Why do all men, whether barbarians or
Greeks, count up to ten, and not to any other number? It cannot have
been chance, for what is always and universally done is not due to
chance. ...Is it because men were born with ten fingers, and so use this
number for counting everything else as well?’
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astrously lacking in the much later Greek and Roman schemes
of enumeration. In our modern notation, 123 stands for
1 x (10)2+2 x (10) + 3, the numerals denoting hundreds, tens
or units according to their position. In the same way, for the
Babylonians ' "’ """ stood for 1 x (60)?+ 2 % (60) + 3.* They had
a similar notation for fractions. Just as we write 1-23 to

indicate I+~—«+ so they wrote ' §” " to indicate

(1 )2’
I+60+(6 o)t They did not pass this system of notation
directly on to Europe, but it was probably the origin of the
decimal Hindu-Arabic system which ultimately came to the
western world through the Arabs (p. 105), and is used by the
whole world to-day; it is not known when or how the change
was made from sixties to tens.

They sometimes went even further in the same direction,
dividing their league into 180 cords and the cord into 120
cubits. They also divided the complete circle into 360 degrees.
Some think they did this by taking the angle of the equilateral
triangle (60°) as their fundamental unit, and dividing this
into the usual 60 subunits. Others think that astronomical
considerations may have come into play. When the early
Babylonians first tried to measure the number of days in the
year, they would find it was about 360. More than 2000 years
before Christ they agreed to call it 360 as an approximation,
dividing their year into 12 months of 30 days each, and
inserting extra months now and then as needed to prevent
the calendar running away from the seasons. At a later date,
they traced the Zodiac—the path in which the sun, moon and
planets appear to travel across the sky—and divided it into
12 equal divisions, so that the sun moved through one every

* In place of our ten so-called Arabic numerals (see p. 110) 0, 1, 2, ..., 9,
the Babylonians used only two symbols—the wedge-shaped ’ to denote
unity and ( to denote 10; we can almost imagine these to have represented
a finger and two outstretched hands. For instance, they wrote (¥ for
our 14.
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month. It was now natural to divide each of these into 30
parts, one of which the sun would traverse every day, and the
complete circle would now be divided into 360 equal units.

There is evidence that the Babylonians not only named the
twelve divisions of the Zodiac, but also divided the northern
sky into ‘constellations’, or groups of stars, and gave these
their present names. They did not travel into the southern
hemisphere, and so could never see the stars surrounding the
south pole of the sky; here the constellations have modern
names, such as the ‘clock’ and the ‘telescope’. But the
constellations of the northern sky carry the names of the
legendary figures and heroes of antiquity, suggesting that
they were grouped and named in ancient times.

The earth wobbles as it rotates (p. 92), so that the portion
of the sky which can be seen from any part of the earth’s
surface is continually changing; that part in which the con-
stellations bear ancient names is the part which could be seen
from about latitude 40° N., in about the year 2750 B.C., and
this is thought to suggest that these constellations were
grouped and named by the Babylonians of some such date.
They are practically identical with our present-day constel-
lations of the northern sky. The Chinese group and name
their constellations differently, showing that our constellations
did not come to us from the Chinese.

The early astronomers did not know how to measure small
fractions of a day with any precision; no one did, until
Galileo discovered the principle of the pendulum clock early
in the seventeenth century (p. 149). Nevertheless, some two
or three millennia before the Christian era Babylonian priests
were recording planetary motions with fair accuracy, especially
those of Venus. One temple is said to have possessed a
library of tablets of such observations which dated from before
3000 B.C., while a later set commencing about 747 B.c. proved
very valuable to later generations of astronomers. By the
seventh century B.cC., the movements of the heavenly bodies
were being regularly recorded at a complete system of observa-
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tories and reports were being sent to the king, who seems to
have controlled both the observatories and the calendar.

The Babylonian astronomers of more recent times knew
enough of astronomy to be able to predict eclipses. The sun
is eclipsed whenever the moon comes directly between it and
the earth, so that if the sun, earth and moon all moved in one
plane, there would be an eclipse every lunar month. Actually
the three bodies move in different planes, with the result that
eclipses only recur after a period of 233 lunar months, which
is equal to 18 years and 114 days. This period of time is
known as the ‘Saronic cycle’ or, more briefly, the ‘Saros’.
Through knowing of the Saros, the Babylonians were able to
predict eclipses as long ago as the sixth century B.C.

Later still they made some amazingly accurate measures of
other astronomical periods. In particular, the following
estimates of the length of the lunar month have survived:*

Nabariannu (about 500 B.C.) 29-530614 days
Kidinnu (about 383 B.C.) 29'530594 days
True value 29'530596 days

Precise knowledge of this kind carried with it a limited
power of foreseeing and predicting the astronomical future,
and this no doubt accounts for the phenomenal vogue of
astrology in Babylonia, and the astonishing prestige which
the Babylonian astrologers enjoyed throughout the ancient
world. For if a student of the sky could foretell the move-
ments of the sun, moon and planets, and if—a belief which
the astrological fraternity were careful to inculcate—the
movements of these bodies influenced human affairs, then
the astrologer could obviously save his clients from harmful
influences and show them how to turn beneficial situations
to their greatest advantage.

Geometry, too, seems to have had a period of brilliance in
Babylonia. Recently deciphered tablets of about 1700 B.C.
show that the Babylonians of that time were acquainted with

* Sir T. L. Heath, Greek Astronomy, p. liii.
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the famous ‘Theorem of Pythagoras’ (p. 28), which the
Greeks rediscovered in the fifth century B.c., and even knew
how to find sets of integral numbers (e.g. 3, 4 and 5) such
that triangles having sides of these lengths would be right-
angled. The Greeks were great geometers but, in this one
particular instance at least, the Babylonians were a good
thousand years or so ahead of them.*

Other tablets of the same period show that the Babylonians
of this time were skilled in arithmetical calculations. They
contain a number of tables for the solution of problems which
lead to quadratic equations, such as the determination of two
numbers, the sum and product of which are known. There
are also tables giving the power to which an assigned number
must be raised so as to yield another assigned number, these
having apparently been used for the calculation of compound
interest; indeed, two examples of such calculation are ap-
pended, the rates of interest incidentally being 20 and 333
per cent. !

EcypT

Egypt and Babylonia had been in such close commercial and
cultural contact from the earliest times that they inevitably
had much in common. The Egyptians, like the Babylonians,
had a good decimal notation for whole numbers,’ but
they failed with fractions. It was their practice, in which the
Greeks followed them until at least the sixth century A.D., to
express all fractions (with the single exception of £) as a sum
of aliquot parts—i.e. of fractions each having unity as its
denominator. For instance, they thought of £ only as 4+ }.

Our knowledge of their arithmetical methods comes largely
from a papyrus which forms part of the Rhind collection in
the British Museum. This dates from about 1650 B.C., but is

* Mathematical Cuneiform Texts, Neugebauer and Sachs (New Haven,
1945). See also Sir T. L. Heath, Manual of Greek Mathematics, p. 96.

+ Units and tens were represented by | and ~, in place of the Baby-

lonian ‘ and ¢, while there were other symbols for hundreds, thousands,
and so on, up to millions.
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only a copy, by a priest Ahmes, of an earlier papyrus which
would seem from internal evidence to have been written
many centuries earlier. It records the resolution of a great
number of fractions into a sum of aliquot parts, the original
numerator always being 2; as, for instance,

& =sst+srotrie ‘
But no rules are given for effecting such resolutions, and the
whole treatise seems to be a mere compendium of results
obtained by repeated trials. We get the impression of a
plodding, unimaginative race.

The Egyptians multiplied by a method which is said
to have been in use in Russia until quite recently. The
‘multiplicand ’—the number to be multiplied—is first doubled,
then redoubled, and so on, thus providing a table giving 2, 4,
8, 16, ... times the multiplicand. From this table they took
the entries needed to give the required result and added them
together. For instance, to multiply by 13, the Egyptian
arithmetician would add together the entries for 1, 4 and 8
times the multiplicand.

They had a simple procedure for finding which entries are
needed. Suppose we wish to multiply 117 by 13. We first
write down 13 and 117 on the same line, as in the margin. We
next divide 13 by 2, disregard the unit re-
mainder, both here and wherever else it occurs, 13 117
and write down the quotient 6 under 13. At the ’g—"i’gg
same time, we multiply 117 by 2, and write 1 936
down the product 234 under 117, thus completing 17 1521
the second line. We repeat the process to obtain
a third line and continue until the first entry is reduced to 1.
We now strike out all lines in which the first entry is even—
in this case the second line alone—and add all that remains
in the second column, as has been done in the margin.* The
sum 1521 is the product we need. This method reduced all

* The mathematician will see the reason for this if he notices that odd
and even numbers in the first column correspond to digits 1 and o when
the multiplicand is expressed in the scale of 2.
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multiplication of integers to a series of multiplications by 2;
fractions could be multiplied by 2 by using the table of
resolutions mentioned above.

In general astronomy the Egyptians were far behind the
Babylonians; they did little more than record the appearance
of the sky on various occasions, and even this was for worship
rather than for study. There seems to have been no curiosity
as to why things happened in the sky as they did—only a
perfectly unimaginative record of the happenings.

On the other hand, Egyptian geometry was probably well
in advance of Babylonian. This is hardly surprising. The
yearly flooding of the land by the waters of the Nile involved
an annual return to the Sisyphus-like task of mapping out
fields, and this gave a special importance to the study and
practice of geometry. The Rhind papyrus contains a number
of rules for measurement, as well as some geometrical infor-
mation of a more abstract kind, but difficulties of language
often obscure the meaning. We cannot, for instance, tell
whether the area of a triangle is said to be half the base
multiplied by the height, or half the base multiplied by the side.
The former is of course correct, the latter incorrect, but the two
become almost the same thing when the triangle is very high
and narrow, as it is in the diagram shown in the papyrus.

A more recently discovered papyrus, the Moscow papyrus
of the Twelfth Dynasty (probable date about 1800 B.c.),
shows a far more extensive knowledge of abstract geometry.
For instance, it contains a correct formula for the volume of a
truncated pyramid, i.e. the piece of a pyramid cut off by a
plane parallel to its base, like a partly finished stone pyramid.
It also contains a formula for the area of a hemisphere, which
implies that the hemisphere has twice the area of the circle
which forms its base. This is absolutely correct, although the
formula as given supposes that the value of 77, the ratio of the
circumference of a circle to its diameter, is £58, this being the
value generally assumed in Egypt at the time.

* First published in 1930.

*
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But the true greatness of Egypt was not in its mathematics;
it lay rather in medicine. Carvings dating from about
2500 B.C. depict a surgical operation in progress, while the
Ebers papyrus of about 1600 B.C. contains a complete treatise
on the preparation of drugs and therapeutic essences, and an-
other, the Edwin Smith papyrus, is a really scientific treatise
on surgery. Medicine and surgery were the only sciences
outside geometry and engineering in which the Egyptians
seem to have excelled, and neither in Egypt nor in Babylonia
was there anything worth calling physical science.

PHOENICIA

Strabo tells us that the Phoenicians paid special attention to
the sciences of numbers, navigation and astronomy. We may
safely believe the statement. They could hardly have become
the great trading power of antiquity unless they had possessed
considerable numerical aptitude, nor the greatest seafaring
nation of their time unless they had studied navigation and
astronomy. Little evidence of this has survived; any docu-
ments there may have been disappeared without even, so far
as we know, being quoted. But we read that in the sixth
century B.C. Thales (p. 58) advised the Greeks to adopt the
Phoenician practice of finding the north from the Little Bear
instead of from the Great Bear, as was usual with them. They
do not seem to have followed his advice, for some six centuries
later we find a minor Greek poet, Aratus writing: ‘It is by
Helice [i.e. the Great Bear] that the Achaeans on the sea judge
where to direct the course of their ships, while the Phoenicians
put their trust in the other [i.e. the Little Bear] as they cross
the sea. Now Helice is bright and easy to note, appearing
large from earliest nightfall; the other is smaller yet better
for sailors, for the whole of it turns in a lesser circuit [i.e. it is
nearer to the north pole], and by it the men of Sidon steer the
straightest course.’*

It is significant that the two greatest scientists of early

* Sir T. L. Heath, Greek Astronomy, p. 113.
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Greece, Thales and Pythagoras, were both reputed to have
been of Phoenician extraction, as was also Euclid the geometer
and Zeno the philosopher, although many doubt these claims.

GREECE

The study of physical science is ultimately a search for law
and order in phenomena, so that it cannot flourish without
the tools needed for the discovery and discussion of whatever
law and order there may be. The fundamental tools needed
in the physical sciences are arithmetic, geometry and tech-
niques for the measurements of time and space.

Now these tools seem to have been available in early Egypt
and Babylonia, and possibly in Phoenicia also, in ample
measure, relative to the needs of the time. But no serious
scientific use was made of them until many centuries later,
and when a true scientific spirit first began to flourish, it was
neither in Egypt nor in Babylonia, but in a small Greek colony
on the shores of the Aegean Sea. There was no complete
break with the past, but tender plants seemed to acquire a
new capacity for growth—as though the fresh soil of Greek
civilisation provided some new factor that had been lacking
in the older civilisations. What, then, was this new factor?
Partly perhaps the liberation of knowledge from the priest-
hood and its transfer to the laity. For, as Farrington writes:*
‘The organised knowledge of Egypt and Babylon had been a
tradition handed down from generation to generation by
priestly colleges. But the scientific movement which began in
the sixth century among the Greeks was entirely a lay move-
ment. It was the creation and the property, not of priests
who claimed to represent the gods, but of men whose only
claim to be listened to lay in their appeal to the common
reason of mankind.” More generally, it was perhaps that
special kind of intellectual curiosity which impels men to try
to understand rather than merely to know.

* Science in Antiquity, p. 36.



THE REMOTE BEGINNINGS 15

The Egyptians, as Plato said, had no such love of know-
ledge as the Greeks had; their passion was rather for riches
and material prosperity. They had accumulated masses of
particular and isolated facts, but had no idea of letting one
fact point the way to another. Knowledge was a matter of
revelation, a gift from the gods, and it was not for man to try
to discover what Thoth* (Hermes) had left untold. And so we
read of the priestly watchers of the stars standing on their
pylons night after night to record the positions of the planets,
but we hear of no attempt to discover the laws governing
their motions.

The Babylonians were influenced by their astrological
success, which urged them to perfect the very lucrative arts
of foretelling the astronomical future, but again we hear little
of their trying to increase their knowledge from sheer intel-
lectual curiosity, or of using what knowledge they had for any
purpose except astrological gain. Knowledge had been piling
up in Egypt and Babylon, and perhaps in Phoenicia also, but
the quest of knowledge for its own sake made but little appeal
until the Greeks came.

Who, then, were these Greeks who showed these new
capacities and interests, and so could weld the raw material
of disconnected facts into a science? Where did they come
from, and whence did they draw their intellectual powers?

We do not know; it is one of the great unsolved mysteries
of history. The great civilisations of antiquity—the Indian,
the Chinese, the Persian, the Egyptian, the Minoan civilisa-
tion in Crete and the Babylonian in Mesopotamia—all had
been established for thousands of years before the Greeks
appeared, and each had its own distinctive and well-marked
characteristics. The newer Greek civilisation did not bear the
stamp of any of them. It was something fresher and younger,
and it was certainly different. The first clear picture we have

* In Plato’s Phaedrus, Socrates says that he had heard that the Egyptian
god Thoth was the first to invent arithmetic, the science of calculation,
geometry and astronomy.
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of it is in the Homeric poems, which are thought to have
assumed their present form in the ninth century B.c., but
probably describe Greek civilisation of about two centuries
earlier.' They tell us of an eager and joyous race, living with
their bodies rather than with their minds, and untroubled by
any doubts about the world in which they found themselves;
their ideal was to hold both hands before the fire of life, and
enjoy it to the full while it lasted. Apart from mentioning a
few stars by name, the poems show no acquaintance with
physical science of any kind, and there is nothing in them to
suggest those powers of abstract thought and intellectual
curiosity which were to come to such splendid fruition a few
centuries later.

Yet on the artistic side, many have noticed a resemblance
between the new Greek civilisation and the older Minoan
civilisation which was centred in Knossos of Crete ¢. 3500-
1500 B.C.; they find the same conception of beauty and the
same sense of form in both, the same exquisite craftsmanship
and the same care for detail. Scholars are still unable to read
the Minoan script, but some think that the later Greek
civilisation must have owed a great deal to the earlier Minoan.
The position of Knossos made it a natural trade centre, and
it may well have received ideas as well as goods from the east,
and passed them on to the west.

Even so, this does not tell us where the Greeks themselves
originated. Many scholars have imagined invading warriors
—Homer’s Achaeans—entering Greece somewhere about
1400 B.C., possibly armed with weapons of iron which speedily
vanquished the primitive weapons of the natives, the Pelas-
gians. Some think they came from western Asia or the
Russian steppes; others think they came from the Danube
basin or northern Europe. Some think that the main torrent
of invaders impinged on the Greek mainland, while subsidiary
streams passed on to settle on the islands and coasts of the
Aegean Sea—the westerly fringe of Asia Minor—where they
formed the settlements of Ionia to the north, and Doria to
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the south. With them they brought their tribal gods, the sky-
and-rain god Zeus, mountain-dwelling and thunderbolt-
hurling, together with his retinue of sons and daughters—
Apollo, Athena and the rest. These were soon accepted by
the Greeks as their official gods, but had to share their
sovereignty with other gods who were already established in
Greece, and ‘came in direct descent from the fertility-gods of
yet more primitive tribes.*

In any case, it seems a safe conjecture that the Greeks were
a mixed race, and their civilisation a blend of ingredients from
many sources. History provides many instances of asuccessful
new civilisation emerging from an admixture of invading
conquerors with a more primitive native race; as when tin is
mixed with copper, something new results which is better
than either ingredient. And so it may have been with Greece.

Somewhat suddenly, we encounter the distinctly Greek
intellect, and with it the first group of scientists that we can
recognise as such. The time was the sixth century B.c., when,
as Herodotus says: ‘'The Greek race was marked off from the
barbarians, as more intelligent and more emancipated from
silly nonsense.” The place was Ionia, and more especially
Miletus, the largest city in Ionia and perhaps in all Greece,
although its population can hardly have been more than
10,000. It was a great centre for trade, especially with Egypt,
and as it had founded more than sixty daughter-cities on the
shores of the Mediterranean, it must have enjoyed a constant
interchange of ideas with other Mediterranean countries.
Pottery which has been excavated there shows that it existed
in Minoan times; by the middle of the sixth century B.c. it
had become pre-eminently the centre of Greek culture, a sort
of focal point through which all rays of intellectual light were
likely to pass on their way from east to west.

* See Gilbert Murray, Five Stages of Greek Religion.
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CHAPTER II

IONIA AND EARLY GREECE
(600-320 B.C.)

IN the present chapter we examine the first three centuries
of Greek scientific progress; our period begins with the
carliest impact of oriental scientific ideas on Ionian Greece,
and ends with the conquest of Greece by Alexander the Great
(332 B.C.), the death of Aristotle (322 B.C.), a general decline
of science and art in Greece, and the foundation of the City
of Alexandria and of its university (323 B.c.), which was to be
the intellectual centre of the world for many generations to
come. In brief, we study Greek science in the period of
Greece’s intellectual greatness.

This science was almost entirely mathematical. The Greeks
- had nothing of our elaborate equipment of laboratories and
observatories. Indeed, their equipment was limited to their
own brains, but these were of the very best; just as Aeschylus
and Sophocles exhibit mental powers comparable with those
of Shakespeare, so Archimedes and Aristarchus exhibit powers
comparable with those of Newton. Thus they could attack
their various problems only by reflection and contemplation,
aided at most by a minimum of observation, and when
physics and astronomy creep in, it is in the form of philoso-
phical speculation rather than of true science as we understand
it to-day.

It will be convenient to discuss the early Greek mathe-
matics, physics and astronomy separately, and in this order.

GREEK MATHEMATICS

THE JONIAN ScHOOL
THALES. First and foremost among the Greek mathema-
ticians stands Thales, who was born in Miletus in or about
624 B.C., and lived until about 546 B.c. Herodotus says he was
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of Phoenician extraction, but other accounts say he came of
a noble Milesian family.

Intellectually he was a giant, and, as with so many of the great
figures of science, his talents were as varied as they were
numerous. ‘Statesman, engineer, man of business, philoso-
pher, mathematician and astronomer, he covered almost the
whole field of human thought and activity.”* Like many
thinkers, he got a reputation for living in a world of his own;
Plato records a story of his walking into a well while he was
looking at the stars, and being ‘rallied by a clever and pretty
maidservant from Thrace’ for being so eager to know what
went on in the sky that he could not notice what was happening
at his own feet. Notwithstanding this lapse, he appears to
have been particularly shrewd in practical affairs. Aristotle
relates that one year when the olive crop promised to be
particularly abundant, he made a ‘corner’ in olive presses,
buying all he could, and then reaping a fortune by letting
them out at his own price. He was clearly an engineer of
some capacity, for he was commissioned to get the army of
Croesus across the river Halys on dry feet. He did this by
making an artificial river-bed by the side of the natural one;
after the army had walked across the old and now dry river
bed, the water was turned back into its old course. And
we read more than once of his intervening effectively in
politics.

As it was largely through his activities that the scientific
spirit first entered into Greece, we should especially like to
know where and how he acquired his interest in science, but
this information is lacking. There may have been some
Babylonian influence, for we read of a Babylonian priest
establishing a school in the nearby Island of Cos, and it has
been conjectured that Thales may have been one of his pupils.
On the other hand, we know that Thales travelled a great deal,
particularly in Egypt and Babylonia, and we are definitely told*

* Sir T. L. Heath, Manual of Greck Mathematics, p. 81.
t By Diogenes Laertius, quoting Hieronymus of Rhodes.

2-2
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that he never had any teacher except when he associated with
the priests in Egypt.

However this may be, a man of such wide and varied
interests could be trusted to assimilate any scientific ideas he
met with on his travels; there were few enough in those days.
He is likely to have acquired some geometrical knowledge in
Egypt, and to have learned in Babylon of the Saronic cycle
and the Babylonian method of predicting eclipses. Herodotus
records that when he returned home, he gained a great
reputation in Miletus by predicting an eclipse of the sun.*
It occurred during a battle between the Medes and the
Lydians, and the darkness was so complete that the fighting
had to stop. This was thought to show that the gods wished
the war to end, and a peace was arranged. Thus not only the
eclipse but the prophecy also was brought into prominence,
and in §82 B.c. Thales was declared one of the ‘seven wise
men’ of Greece—the only philosopher in a crowd of politicians;
‘Plutarch, writing about A.D. 100, says he was the only one of
the seven ‘whose wisdom stepped out in speculation beyond
the limits of practical utility’.

None of his writings have survived; we know them only at
third hand. Just about a thousand years after his death, the
Athenian philosopher Proclus (p. 37) wrote a Commentary on
Euclid, which commenced with a brief summary of Greek
mathematics up to the time of Euclid.! This tells us that
Thales went to Egypt, and introduced the study of geometry
from there into Greece, and that he was not interested in it
solely for its practical applications, but also ‘as an abstract

* Recent investigations cast some doubt on the whole story, but I have
recorded it in the form in which it is told by Herodotus and repeated by
innumerable other historians. If the story is true, the eclipse would
probably be that of 28 May 585 B.cC., although Eudemus, in his History of
Astronomy, says it was about the fiftieth Olympiad, 580~577 B.C.

t The authorship of this summary is unknown. It was formerly known
as the Eudemian Summary from a probably mistaken belief that it had
been written by Eudemus, a pupil of Aristotle, and was an extract from

his great History of Geometry. See Sir T. L, Heath, 4 History of Greek
Mathematics, 1, 118,
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deductive science, based on general propositions’. It credits
him with a knowledge of the following four propositions:

(1) Any diameter of a circle divides it into equal parts.

(2) The angles at the base of an isosceles triangle are
similar (fig. 1).*

(3) When two straight lines cross one another, the opposite
angles are similar (fig. 2).!

(4) When the base of a triangle is given, and also the angles
at its ends, then the triangle is completely determined.

Plutarch credits Thales, at least by implication, with the
further knowledge that when two triangles are of the same
shape (i.e. when their angles are the same), their sides are

Fig. 2.
Fig. 1.
proportional. For he says that Thales measured the height
of an Lgyptian pyramid by comparing the length of its
shadow with that cast by a stick of known length. If, for
instance, a 6 ft. shadow was found to be cast by a 3 ft. stick,
then a 600 ft. shadow would be cast by a pyramid 300 ft. in
height. Plutarch adds that this method of measurement
greatly impressed the Egyptian King Amasis, who was pre-
sent. But earlier writers, Hieronymus and Pliny, say that
Thales chose the precise moment when the shadow was equal
to the height of the object which cast it. If this was all,
Thales may not have been acquainted with the more general

* An isosceles triangle is one in which two sides are equal; in fig. 1,
the sides marked x are equal, so that the angles marked o are similar. The
use of the word similar, instead of equal, suggests that Thales did not
think of an angle as a magnitude, but rather as a shape formed by lines.

t Thus in fig. 2, the angles marked x are similar, as also are those

marked o.
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proposition, nor even with the rather difficult idea of pro-
portionality. On the other hand, Proclus says that Thales was
able to determine the distances of ships out at sea, and that
his method involved the theorem of proportionality; the
details of the method are not known.

Thales is also credited with another proposition which he
must have thought important, for he is said to have sacrificed
an ox to the immortal gods to celebrate its discovery. Pam-
phila, who wrote in or about the
reign of Nero (A.D. 54-68), records D
it in the form, ‘Thales was the /o
first to inscribe a right-angled
triangle in a semicircle’, meaning

apparently that he was the first % o
to discover that the angle in a A C B
semicircle—such as the angle Fig. 3.

ADB in fig. 3—is a right angle.

All these propositions deal with lines, in contrast with
Egyptian geometry which dealt only with surfaces, areas and
volumes; we may say that Thales was the creator of the
geometry of lines. Further the propositions of Thales an-
nounced abstract universal truths, in contrast with the pro-
positions of the Egyptians which were concerned with
practical measurements; Thales established abstract geo-
metry as a science.

We do not know how Thales reached his various results.
So long as geometry proceeds by purely deductive methods,
nothing can come out of it that has not been previously put
into it in the form of assumptions. It would be interesting to
know exactly what assumptions Thales made to arrive at his
propositions. Some are of course so simple that the question
hardly arises; for instance, we can see that a circle is bisected
by its diameter as soon as we double it back on itself with a
diameter as a hinge. But the proposition about the angle in a
semicircle is less obvious. It is easy to prove it deductively if
it is known that the sum of the three angles of a triangle is



IONIA AND EARLY GREECE 23

equal to two right angles, but otherwise not. And Thales is
hardly likely to have known this; he did not think of an
angle as a magnitude, so that the idea of adding angles
was foreign to his thought; also Proclus definitely attributes
the theorem to the Pythagoreans, who came some 50 years
after Thales (p. 27). On the other hand, Thales may well
have known, as a matter of fact, that the two diagonals of a
rectangle are equal and bisect one another; this is the kind of
relation that jumps to the eye on inspecting a tiled floor,
besides being obvious from the
consideration that there can be no
reason for one semi-diagonal being
longer than any other (fig. 4). If
'Thales had ever noticed this, he
would see at once that a circle
could be drawn through the four
corners of any rectangle, and the truth of the theorem would
become obvious.

Many of Thales’s proofs may have been of this semi-
intuitive kind; indeed, Proclus tells us that he ‘discovered
many propositions,. . .his method of attack being in some
cases more abstract, in others more observational’ (adobnTi-
KWTEPOV).

Most of his ‘discoveries’ were so rudimentary that any
schoolboy of to-day would dismiss them as obvious. But this
is only to say that Thales stood at the very fountain-head of
European geometry, where he turned the stream of discovery
into truly scientific channels, so that the tracing out of the
history of geometry, and thence of mathematics and science
in general, is merely tracing the course of this stream. The
major practical achievements of physical science—the electric
current, the telegraph and telephone, the aeroplane and the
motor-car, radio and television—all are of western origin, and
if we follow them back to their ultimate source, we find that
they all trace back to the stream of knowledge started by
Thales of Miletus.

Fig. 4.
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ANAXIMANDER. Thales found an obvious successor in his
fellow-citizen and friend Anaximander, who was born about
611 B.C.,, and lived until about 547 B.c. Suidas tells us that
he wrote a book on geometry, so that he seems to have carried
on the geometrical tradition of Thales, but he was apparently
more interested in astronomy, geography and the general
problems of philosophy. Apart from his geometry, he is said
to have written only one book, On Nature, which appeared
shortly before his death. Theophrastus® gives an account of
him and his doctrines which conveys an impression of great
mental powers and a wide variety of interests. Sometimes he
seems to have been born 2000 years before his time; he
certainly approached nearer than any of his contemporaries
to the viewpoint of present-day science.

In particular, he introduced the idea of evolution into
science. Hippolytust tells us he distinguished ‘the three
stages of coming into being, existing and passing away’. He
attributed all change to motion, and maintained that there
are an infinite number of worlds, all in motion, ‘since without
motion there can be no coming into being or passing away’.
He also introduced evolutionary ideas into biology, saying
that living things first originated in slime which was evaporated
by the sun; they had prickly coverings at first, but subse-
quently moved to drier places. Man, he thought, was born
inside a fish, and was at first like a fish. He is different from
all other animals, which find food for themselves soon after
birth, for he needs long nursing; if man had originally been
as he is now, he could not have survived.

Besides all this, he was the first geographer to attempt a
complete map of the inhabited parts of the earth’s surface.
He also showed how time could be measured by a sort of
primitive sundial in which a shadow was cast by a vertical
stick, but the Babylonians had used this device before him.

After his death, the Milesian school gradually transferred its
interest to philosophy, and finally came to an end somewhere

* Physical Opinions. t Refutatio omnium Haeresium.
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about 400 B.c. We need not concern ourselves with it any
more; if we wish to watch the development of science, we
must leave Miletus with one of its most distinguished citizens
who carried the torch of geometrical learning still farther to
the west. We must give our attention to the mysterious and
mystical figure of Pythagoras, and the school he founded.

THE PYTHAGOREAN SCHoOOL

PYTHAGORAS. We know little of his life, birth or death.
His birthplace was Samos in Jonia and, like 'T’hales and Euclid,
he is said to have been of Phoenician extraction, but the claim
is suspect. The only certain date in his life is 530 B.c., when
he left Samos to found a school in Croton, a Dorian colony in
southern Italy. He was then young enough for his mother to
be still alive (for he took her with him), and old enough to
leave his birthplace on political grounds, whence it is generally
assumed that he may have been born about 570 B.c. Iam-
blichus * says that Thales was so impressed by Pythagoras’s
ability that he imparted his own store of knowledge to him,
and advised him to go and study with the Egyptian priests.
This he did, studying astronomy and geometry from the age
of 22 to 44, after which he lived in captivity in Babylon for
12 years and ‘attained to the highest eminence in arithmetic,
music and other branches of knowledge’. But it is difficult
to fit all this together into a consistent biography.

In Croton he founded a sort of brotherhood of learned men,
the members of which possessed all things in common—
knowledge, philosophy and goods—ordering their lives by a
common moral code, and forming a body rather like 2 modern
religious order. Its members preached and practised strict
self-control, temperance and purity, living simple ascetic lives
and avoiding animal food because they believed that the
beasts were akin to man—one of the few instances of con-
sideration for the animal kingdom that we meet before the
modern era; indeed Pythagoras is quoted with Empedocles

* De Vita Pythagorica.
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as the founder of this branch of morality.* In brief, the
Pythagoreans hoped, through abstinence, discipline and relig-
ious ceremonies, to purify the soul, free it from the wheel
of birth and fit it for the life after death. For they regarded
the body merely as a temporary prison for the soul, Pythagoras
himself advocating the doctrines of immortality and trans-
migration of the soul, having learned both from his teacher
Pherecydes of Syros. Pythagoras wrote: ‘When we live, our
souls are dead and buried in us, but when we die, our souls
revive and live.’

In practical affairs the Pythagoreans aimed at a moral
reformation of society, and this led to their undoing. Their
advocacy of government by the best men, a true aristocracy
in the most literal sense of the word, brought them into
frequent conflict with the democratic mob who finally, in or
about 501 B.C,, killed many of them and burned their houses,
while their founder fled to Tarentum. Accounts differ as to
how the affair terminated, but the society seems to have ended
a troubled existence somewhere about the middle of the
fourth century B.C.

The daily occupation of the brotherhood was the acquisition
of knowledge, and this they shared only with one another;
anyone who divulged it was thought worthy of death. We
read of two Pythagoreans being drowned at sea, and in each
case it was said to serve him right; one, named Hippasus, had
boasted that he had discovered a new regular solid, the dode-
cahedron (p. 34), while the other had disclosed the incom-
mensurability of /2 (p. 32).

"This habit of secrecy makes it very difficult to say how much
the Pythagoreans achieved in science, and impossible to assign
results to their individual authors. Our most useful guide is
an account of the Pythagorean philosophy and teaching which
the astronomer Philolaus (p. 127) wrote some ninety years after
the death of Pythagoras. Nothing of the original book has

* Lecky, History of European Morals, 11, 166; Cambridge Ancient
History, 1v, 576.
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survived, but parts of it are described in the so-called Eude-
mian fragment (p. 20). Plato is said to have drawn upon this
book for his only scientific dialogue, the T7maeus. Proclus
tells us that Pythagoras ‘transformed the study of geometry
into a liberal education’, while Aristoxenus says he ‘advanced
the study of arithmetic, and took it out of the region of com-
mercial utility’.

The Pythagorean arithmetic was much concerned with the
mystical properties of integral numbers. We all know how
superstition can link up ideas with numbers; 3 and 7 may be
sacred, 13 unlucky, 666 the number of the beast, and so on.
The ideas of the Pythagoreans have been recorded by
Aristotle. They associated the number 1 with a point, 2 with
a line, 3 with a surface and 4 with a space. This was simple
enough, but 2 was also associated with opinion because both
are ‘unlimited and indeterminate’, and also with femininity,
for reasons unspecified. Three was not only associated with
the idea of surface, but also with masculinity. Then 4 was
associated with justice because 4 =2 x 2, and so is the product
of two evenly balanced factors. Next g5 is associated with
marriage, because it results from the union of the male 3 and
the female 2, and 7 with virginity because it has no factors.
There were also ten fundamental oppositions associated with
odd and even numbers, such as the finite and the infinite, the
one and the many, the right and the left and so on. It seems
unbelievably futile to-day, but the Pythagoreans thought it
would provide the key to the universe. Aristotle says they
thought that numbers not only expressed the form of the
universe but also its very substance. Just as, in a later age,
Plato thought that the world consisted primarily of mind, or
just as Democritus thought that it consisted of atoms, so the
Pythagoreans thought that it consisted of numbers. To them
mathematics was the whole of reality, and they did not dis-
tinguish between a geometrical solid and a physical body
which would move in space.

They also studied numbers in a geometrical setting, paying
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special attention to what they described as triangular and
square numbers. The triangular numbers were 1, 3, 6, 10,
15, etc., because any one of these numbers of dots will
exactly fill up the interior of an equilateral triangle with
evenly spaced points, as in fig. 5.* The square numbers were
similar, the triangle being replaced by a square; thus they
were I, 4, 9, 16, 25, etc. The Pythagoreans discovered a
number of trivialities about these numbers, as, for instance,
that the sum of two consecutive triangular numbers is a
square number; this can be seen immediately on fitting one
triangle on to the other, as in fig. 6.

On the other hand, they made discoveries in true geometry
which were of fundamental importance. The famous ‘T'heo-

Fig. s.

Fig. 6.

rem of Pythagoras’ is usually attributed to them, and
generally to Pythagoras himself: ‘If a triangle is right-angled,
the square on its longest side is equal in area to the sum of the
squares on the other two sides.” Much of what the Pytha-
goreans did was obviously silly, useless and misleading, but
if they really discovered this theorem they laid a real corner-
stone of mathematical science, lasting and indispensable.
Pythagoras may have rated this as his greatest achievement,
for Apollodorus, a poet of unknown date, writes of how
‘Pythagoras discovered that famous proposition on the
strength of which he offered a splendid sacrifice of oxen’.
Yet such an action seems quite at variance with all we know

* Thus the nth triangular number was the sum of the series1 +24-3+...
to n terms, which is §n(n+1).

t This is the geometrical equivalent of the relation
tn—1n+in(n+1)=n?
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as to the character of Pythagoras, and the story is so suspi-
ciously like that already told of Thales (p. 22) that it seems
possible that Apollodorus merely confused the two men, and
was followed in his error by later writers. Even if the sacrifice
was made by Pythagoras, there is some uncertainty as to
which particular discovery produced it. Most accounts say
it was the theorem just described, but one at least says it was
a different theorem, while Vitruvius, one of the earliest
writers on this subject, says that the sacrifice resulted from
the simpler discovery that the particular triangle of sides
proportional to 3, 4 and § is right-angled. The Pythagoreans
might well have discovered this through their studies of
‘square’ numbers.*

It is often said that this last result was known to the ancient
Egyptians, and that their ‘rope-stretchers’ used it to construct
right-angles, but apparently there is
no valid evidence for this." On the 4
other hand, as we have already seen, / \
the general theorem was known to B ¢
the Babylonians of about 1700 B.C.
Tablets of this date discuss how to
calculate the diameter AE of a circle 0
(fig. 7) when the chord BC and the
sagitta DA are known, the result ob-
tained being simply an expression of !
the Pythagorean theorem . E

(OC2=O0D?+ DC?). Fig. 7.
An Indian book of the fourth or fifth century B.C. also states

* For we may represent any square number n? by nxz dots arranged
in a square, and can then add a fringe of 2n+ 1 dots, 7 round each of two
adjacent sides and one in the corner, thus obtaining the square number
(n+ 1) If, then, 2n+ 1 is itself a square number, a?, we have

a*+n?=(n+1)?%
so that a, #n and n+1 form possible sides for a Pythagorean triangle, a
formula which is attributed to Pythagoras himself. The smallest value of
2n+1 \ghich is a square number is 9, and this leads to the triangle of sides
y 4 an .
’ : T. Esric Peet, The Rhind Mathematical Papyrus, p. 32.
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the general theorem, but without proof, and explains how
right-angles can be drawn by constructing triangles of sides
3 4 5 5, 12, 13; 8, 15, 17; and 12, 35, 37.

However much or little the theorem may have been known
before the time of the Pythagoreans, there can be but little
doubt that it was rediscovered independently by them—and,
according to most of the European writers of the next few
centuries, by Pythagoras himself. And it was this rediscovery
that introduced the theorem into modern mathematics.

The reader with no mathematical interests may wonder
wherein the importance of this theorem lies; he may think it
abstract, pedantic and of only academic interest. But let us
examine a practical application of it. Colchester lies 30 miles
to the north and 40 miles to the east of London. How are we
to deduce how far it is from Colchester to London in a bee-
line? The answer is: by the theorem of Pythagoras, and by
nothing else short of actual physical measurement. The
theorem tells us the distance from Colchester to London is
50 miles, because 502=402+ 30% Thus it tells us how much
we save by travelling direct instead of going round the sides
of a triangle. The original theorem was applicable only to
right-angled triangles, but it is easily extended to triangles
of any shape. Looked at in this way, we can no longer feel
surprise that the theorem forms a corner-stone—perhaps the
corner-stone—of the science of geometry.

We do not know how the result was proved. Hofmann has
collected thirty different proofs, and it may have been almost
any one of these. Perhaps it is most likely to have been the
simplest, which runs as follows:

We drop a perpendicular AD from the right-angle 4 of the
triangle on to the opposite side BC (fig. 8). Then the three
triangles ABC, DBA and DAC are all of the same shape, so
that their sides must be proportional (p. 21). Thus

..... = whence AB?*=BC x BD.



IONIA AND EARLY GREECE 31

On treating the other small triangle in the same way, we find

that
AC2=BC x DC.

Thus the sum of squares on AB and AC is BC (BD + DC),
which is equal to the square on BC—the theorem of Py-
thagoras.

We have not yet extracted all the meat from fig. 8, for the
two small triangles are also similar to one another, so that
AD?=BD x DC. Here we have A
the solution of another problem
whichis attributed to Pythagoras—
to construct a square which shall
have the same area as a given
rectangle. The ‘splendid sacrifice
of oxen’ is sometimes associated
with the discovery of this, rather
than of the main Pythagorean theorem, but the two are so
intimately connected that they may well have been discovered
together.

The Greeks were much interested in problems of this last
type. They had little or no aptitude for algebra, so that even
the simplest of algebraic formulae meant nothing to them
unless they could draw a geometrical picture of its meaning.
They knew that the areas of surfaces and the volumes of
solids were important, but they did not know how to express
them except as the areas of squares and the volumes of cubes.

The simple problem just mentioned may be described as
that of squaring the rectangle. A far more famous problem
was to square the circle, i.e. to draw a square of which the
area should be equal to that of a given circle. It has long been
known that this problem cannot be solved by purely geo-
metrical methods, so that ‘trying to square the circle’ has
almost passed into common language as a synonym for
attempting the impossible. But this was not known to the
Greeks, and the Pythagoreans were commonly credited with
having solved the problem (see p. 37).

B D (o]
Fig. 8.
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Another problem of a similar type, however, they did show
to be impossible of solution. In any square ABCD (fig. 9),
the square on the diagonal AC is equal to twice the square on
either of the sides 4B, BC. This can be seen from the
theorem of Pythagoras, or by com-
pleting the square on AC as in
fig. g—again a pattern such as might
be found on a tiled floor. We express
this by saying that the diagonal of
a square is equal to 4/2 times the 4 !
side, and are satisfied to know that |

|
!

C

the value of /2 is 1'4142..., a
non-terminating decimal. But the
Pythagoreans were unacquainted
with such modes of thought.
Always underlying their idea of a line was a picture of it as a
sequence of minute units, all equal and so small as to be little
more than points. If the side of any square contained p such
units, and its diagonal g, then the number we denote by 4/2
would have the value ¢/p.

It is fairly easy to show that no such fraction can exist.”

We express this by saying that the square root of 2 is
‘incommensurable’. The Pythagoreans seem to have dis-
covered this incommensurability at an early date,' and realised
that it made havoc of their doctrines that every line consists
of a chain of equal finite units, and that nature is dominated
by integral numbers. They are said to have tried to hush up

Fig. 9.

* For if it can, let p and g be the smallest numbers of which it can be
formed. Then ¢g*=2p%. Since 2p? is an even number, ¢> must be an even
number, so that g itself must be an even number; let us replace it by 27.
Substituting this value for g, the original relation becomes p? =272, which
is of the same form as the original relation, but is formed with smaller
numbers. Thus the original supposition that p, ¢ were the smallest
numbers has led to a contradiction. It follows that the relation ¢?=2p?
cannot be satisfied by any numbers at all.

t One of the later Pythagoreans, Theodorus of Cyrene, Plato’s teacher
in mathematics, is said to have proved that the square roots of 3, s, 6, 7,
8, 10, 11, 12, 13, 14, 15 and 17 are also incommensurable.



IONIA AND EARLY GREECE 33

their fatal discovery, but the truth could not be concealed for
ever, and it has been thought that this explains why the
Greeks banished the idea of numbers and exact measurement
from their geometry.

The mathematician Zeno (c. 495—435 B.C.; not to be con-
fused with Zeno of Citium, a philosopher of a later date)
possibly devised his famous paradoxes with a view to teaching
the same lesson, although there are different opinions as to
this. The best known is the paradox of Achilles and the
tortoise who are to run a race, the tortoise receiving, say,
1000 yards’ start. Can Achilles ever catch the tortoise? Zeno
shows that if the Pythagorean ideas as to length are sound,
he never can.

For Achilles will soon have covered the 1000 yards which
the tortoise took as handicap, while the tortoise has covered
only 100. The race may now be supposed to start afresh, but
with the tortoise’s start reduced to 100 yards. In a second
stage, Achilles covers this 100 yards, while the tortoise covers
only 10. And so the race continues, stage after stage, and at
each stage the handicap is reduced to a tenth of its previous
value. But this can never reduce it to zero, and after an
infinite number of stages, the tortoise will still be in front.
Achilles and the tortoise have both covered an infinite number
of stages, each consisting, according to Pythagorean concep-
tions, of a finite number of finite units, so that the total
distance covered must be infinite. If the Pythagoreans were
right, Achilles could never catch up the tortoise, all of which
is, of course, absurd.

Finally, the Pythagoreans gave much attention to ‘regular
solids’—solid figures in which all the sides and all the angles
are equal. They knew of four such solids which could be
formed out of squares and equilateral triangles as their faces.
The simplest is the cube, built up of six squares standing
mutually at right angles. Then come the four-sided pyramid,
or tetrahedron, built of four equilateral triangles; the eight-
sided octahedron built of eight equilateral triangles; and a

JGPS 3
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more complicated figure, the icosahedron, which had twenty
equilateral triangles forming its faces. Finally, Hippasus
discovered the dodecahedron, formed of twelve regular
pentagons, in about 470 B.C. (p. 26). This, as we now know,
completes the list of regular solids.

To the modern mathematician these various studies seem
to be concerned only with comparatively trivial side-issues.
T'o the Greeks, imbued with the idea that the universe was
fundamentally something of perfect regularity, they seemed
to be of the greatest importance. We shall see below how they
survived into a later age and figured in its efforts to discover
the arrangement and workings of the planets.

ARCHYTAS. The work of these earlier Pythagoreans was
continued and extended by later generations of the society,
although new interests also claimed their attention. Among
the later Pythagoreans, special mention should perhaps be
made of Archytas (about 400 B.C.), a most worthy person who
was seven times governor of the city of Tarentum. He was
especially interested in the mechanical applications of science,
and is said to have worked out the theory of the pulley. He
also constructed a number of mechanical toys, including
flying birds, so that perhaps we ought to regard him as the
father of the science of aeronautics. This broadening of
Pythagorean interests did not commend itself to all the
members of the society, and when Archytas was finally
drowned in a shipwreck, some of the more conservative
members of the society averred that this was a very suitable
ending for one who deviated so far from the lines of study
laid down by their founder.

Archytas became famous for his solution of the problem of
‘duplicating the cube’—a far more difficult problem than the
duplication of the square already mentioned. It had been one
of the famous unsolved problems of antiquity, known as the
Delian problem for the following reason.

In or about 430 B.C. (so Philoponus tells us), the Athenians
were afflicted with an outbreak of pestilence (probably typhoid
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fever), and sent emissaries to the T'emple of Apollo at Delos
to inquire how it could be stopped. The oracle told them to
double the size of the altar of Apollo in Athens, which was
cubical in shape. On receiving this advice, the Athenians
doubled the height, length and breadth of the altar. They
expected the pestilence to stop, but it only got worse. When
a second deputation was sent to Delos, it was explained to
them that the three-fold doubling of the dimensions of the
altar had not merely doubled the volume, as the god had
demanded, but had increased it eight-fold. Hence the im-
portance of knowing how to make a cube twice the volume
of a given cube.

The solution which Archytas gave was very intricate, de-
pending on the properties of the complicated curve in which
a rotating semicircle cuts a stationary cylinder; it is of interest
as showing to what a high degree of geometrical knowledge
and skill the Pythagoreans of this time had attained. We
should also notice the remarkable skill shown by the priests
who served the Delian altar in setting a problem which they
had probably hoped would not be solved before the pestilence
had run its course.

THE ATHENIAN SCHOOL

While the Pythagorean school was declining in numbers and
strength, a new scientific school was developing in Athens,
which had now become the capital and cultural centre of
Greece. To understand how this had come about, we must
recall the history of the years 490—480 B.c.—the decade of
Marathon, of Thermopylae and of Salamis.

To the east of Greece lay the kingdom of Persia, with its
rapidly increasing power and growing ambitions. Its Emperor
Darius wished to expand it to the west, and so came into
conflict with the Ionian settlements fringing the coast of Asia
Minor, as well as with the cities of Athens and Eretria which
sent them help. Greece was not yet a united nation, but a
collection of isolated city-states, each owning allegiance only

3-2
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to its own local government, so that after the Tonians had
been defeated, Athens was left to face the impact of the
Persians almost alone. Yet when the two forces met at
Marathon in 490 B.C., it was the Persians who fled from the
field.

Darius’s successor Xerxes next attacked the still disunited
Greeks with a vast army which was reputed, although no
doubt erroneously, to be five million strong. The Spartans
sent a small force to oppose it, and when this was annihilated,
to the last man, at the vital pass of Thermopylae, the
whole of Attica, including Athens, lay open to the enemy.
There were clashes at sea off Salamis, and on land at Plataea.
When the enemy were utterly defeated in both, they retired
from Europe and the menace from the east was, for the time
being, removed. But with a view to avoiding similar troubles
in the future, the various city-states welded themselves, by
the confederation of Delos, into a single nation with Athens
as their capital.

HIPPOCRATES OF CHIOS. In this fifth-century Athens,
we find three mathematicians of importance. First comes
Hippocrates of Chios (not to be confused with the more
famous Hippocrates of Cos, the physician), who was born in
Chios, one of the Ionian islands, in about 470 B.C., and was
reputed to have squared the circle. He started life as a
merchant, and it is said that he went to Athens at the age of
about 40 to safeguard his interests in a law-suit, took to
consorting with the teachers and
philosophers there, and finally
opened a school of his own.

He had not, however, squared
the circle. In fig. 10 the line AB
is the base of the right-angled
triangle ACB, and is also the
diameter of the circle ADB, so
that the quadrant ACB of the larger circle will be equal in
area to the semicircle ADB of the smaller circle. Subtracting
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from each of these areas the part AFB (unshaded) which they
have in common, we find that the shaded ‘lune’ ADBF is
equal in area to the shaded triangle ACB. Thus Hippocrates
had squared the lune ABFD, which was rather like a circle,
at least in having curved boundaries—hence his reputation.

Hippocrates also tried, but unsuccessfully, to duplicate the
cube. Indeed, the Athenian mathematicians concentrated
especially on three problems:

(1) The duplication of the cube,
(2) The squaring of the circle,
(3) The trisection of the angle,

all of which look simple, but are now known to be impossible
of solution by the ruler-and-compass methods by which they
tried to find solutions. The explanation of this apparent piece
of bad luck was perhaps that all the simple-looking problems
had already been solved, except the few which were insoluble.

And so it came about that the best work of Hippocrates
was nothing more than a text-book on geometry—the earliest
of which we know and, according to Proclus, the first ever
written. We know little of its contents, but it may have had
some influence on, and perhaps even served as a model for, the
more famous Elements of Geometry of Euclid, which appeared
some years later, in which case Hippocrates must in some
part have been responsible for the way in which geometry
was taught in the schools of Europe for more than 2000 years.

PLATO. We come next to Plato, the great philosopher. He
was born in Athens in 429 B.c., and became a pupil of Socrates
in 407. He took to travel when the Athenians put Socrates to
death in 399 B.c., and studied mathematics in many countries.
He returned to Athens about 380 B.c., and founded the school
known as the ‘Academy’, which lasted for nearly a thousand
years. He died in 347 B.C.

Plato’s fame of course rests on his philosophy, but his
writings show that he had a good knowledge and under-
standing of mathematics. Yet only one mathematical result
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of any consequence has ever been attributed to him, and this
perhaps erroneously. It is another attempt at the duplication
of the cube.

In fig. 11, the angles at B, C B 4
and P are all right angles, so that [\l
the three angles marked 1 are all
equal, as are also the three angles
marked 2, and the three angles WP
marked 3. Thus the three triangles

which have P as their vertex, |12 1

namely, APB, BPC and CPD, C D

are all similar, whence it follows Fig. 11

that

PA_PB_PC L. (PAY_PA PB PC_PA
pe=pc™pp oM (FB) PB*PCTPD™ PD’

If, then, we can arrange for PA to be twice PD, a cube of
edge PA will have just double the volume of a cube of edge
PB, and the problem of duplicating the cube is solved. There
is no way of arranging this with ruler and compasses, but it
is easy to do it with a mechanical arrangement in which rods
slide over the surface of a plane board, while pins in the rods
slide in grooves cut in the board. Plato disapproved of any
instruments being used beyond ruler and compasses, yet the
use of the instrument just described might have saved Athens
from the pestilence!

Although Plato’s direct contribution to mathematics was
small or nil, he must have exercised an immense influence on
the development of the subject. He insisted that it should be
taught in its abstract aspects, and not for utilitarian ends. The
Pythagoreans had professed similar ideals, one of their maxims
being ‘a theorem and a step forward, not a theorem and six-
pence’. Studied in this spirit, Plato considered it a model
for all other studies, because of its certitude and exactness,
and thought it the best training in logical thought. Over the
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entrance to his Academy was inscribed &yewpérpnTos undels
elofTew (no one may enter who is not a mathematician)—
no empty threat, for we are told of a candidate being
rejected because he knew no geometry. Indeed, there seems
to have been no limit to Plato’s faith in the educational value
of mathematics. When he was over sixty years of age, Diony-
sius II, the young Tyrant of Syracuse, summoned him to
instil wisdom and virtue into his court. Plato tried to do this
by teaching them all geometry until, in the words of Plutarch
who tells the story, the whole Palace became ‘one whirl of
dust’ as the Prince and courtiers drew their diagrams on the
sanded floors. But the Prince soon decided that other methods
led more directly to the desired result, and Plato returned to
Athens.

EUDOXUS. A third member of the Athenian school who
should be mentioned here is Eudoxus (408-355 B.c.). His
astronomy was more important than his mathematics (p. 66),
although the latter, unhappily all lost, appears to have been
of first-rate quality.

MENAECHMUS AND THE CONIC SECTIONS. Eudoxus left
Athens to found a school in Cyzicus, and here his pupil
Menaechmus (375-325 B.C.) initiated the study of the conic
sections.

If we cut a solid body through with a knife or a saw, or if
we imagine a geometrical solid being intersected by a geo-
metrical plane, we obtain a ‘cross-section’ of the solid, which
will be bounded by a curve which we may call the ‘curve of
cross-section’, For instance, the curve of cross-section of a
cricket-ball is always a circle, no matter how the section is
cut. More complicated solids naturally give rise to more
complicated cross-sections. For instance, the curve of cross-
section of a cylinder or a cucumber is a circle if the section
is made at right angles to the axis, but otherwise is the
curve we call an ellipse—a sort of elongated circle.

Menaechmus examined the curve of cross-section of a cone,
and found that it could be any one of the three curves we now
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describe as conic sections, namely ellipses, parabolas and

hyperbolas (fig. 12).

The conic sections thus introduced into science were
destined to play a great part in the future growth of know-

ledge (p. 83), but their time
was not yet. The immediate
results which Menaechmus ob-
tained were neither very im-
portant in themselves nor were
they used for any important
purpose; indeed, Menaechmus
used them mainly to construct
two more solutions of the now
threadbare problem of the
duplication of the cube.

Not only this particular pro-
blem, but also the whole of
Greek mathematics, was be-
coming rather threadbare by
now. If we wish to trace out
the more important steps in the
progress of mathematics, and of
scientific knowledge in general,
we must turn our backs on
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Fig. 12.

Greece and move to Egypt, more particularly to the new and
magnificent city of Alexandria, but before we embark on a
study of Alexandrian mathematics, let us examine what pro-
gress physics and astronomy had made in the period we are

now reviewing.

GREEK PHYSICS AND PHILOSOPHY

The modern physicist attacks his problems after a quite
definite plan which was vaguely known to the Alexandrians
(p- 124) and, as we shall see below, was pointed out to the
moderns by Roger Bacon, Leonardo da Vinci, Francis Bacon,
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Galileo and others. Its essence is to attack the problem not
as a whole but piecemeal, and to start not from pre-conceived
general principles but from firmly established experimental
knowledge. Some special phenomenon, or some special pro-
perty of matter, is singled out for detailed experimental study,
in the hope that in this way law and order may be detected
in one small corner of the universe. When this has been
achieved, the field of knowledge is extended bit by bit,
questions being asked of nature by direct experiment at every
step.

Greek physics was something entirely different. The Greeks
could not have followed the method just described, even if
they had wanted to, from lack of experimental skill and
equipment. But they would not in any case have wanted to,
and this for two reasons.

In the first place, such a procedure was quite foreign to
their modes of thought. They did not want scraps of know-
ledge about isolated corners of the universe, but a balanced
and comprehensive view of the whole.

In the second place, their general attitude towards life
resulted in many cases in a positive aversion against increasing
knowledge by experiment. In the ordinary affairs of life, they
esteemed mental activity far more highly than physical, which
they thought unworthy of freemen and fit only for slaves. In
some cities the freemen were not allowed to engage in me-
chanical trades. As Xenophon said: ‘The mechanical arts
carry a social stigma, and are rightly dishonoured in our cities.
For these arts damage the bodies of those who work at them
...by compelling them to a sedentary life and to an indoor
life, and, in some cases, to spend the whole day by the fire.
This physical degeneration results also in the degeneration of
the soul.” Experimental science naturally came under the
shadow of this disapproval.* This attitude reached its cul-
mination in Plato. Many before him had commented on the
untrustworthiness of the human senses, but he went to the

* Farrington, Greek Science, p. 23.
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length of arguing that their evidence should be used only to
suggest ideal problems for discussion or intellectual gym-
nastics. ‘While we live we shall be nearest to knowledge when
we avoid, so far as possible, intercourse and communion with
the body, and keep ourselves pure from it until God himself
sets us free.” In astronomy he thought that the motions of the
heavenly bodies should be studied only as providing approxi-
mations to ideal motions of absolute swiftness and absolute
slowness; these absolute motions are to be apprehended only
by reason and intelligence, and not by observation; ‘as in
geometry, we should employ problems and leave the heavens
alone, if we would approach the subject in the right way’. He
made a similar complaint about the musicians, who set their
ears before their understanding: ‘'The teachers of harmony
compare only the sounds and consonances which are heard,
and their labour, like that of the astronomers, is in vain.’

It is not, then, surprising that the earliest Greek physics
consisted mainly of abstract thought of a kind which we
should now describe as baseless speculation. Making no con-
tact with the outer world, and guided only by their individual
ideas as to the fitness of things, the Greeks tried to discover
the plan of the world out of their inner consciousnesses.
Some assumed that the world must have been constructed by
its maker after some simple and elegant pattern. Others,
assuming that the circle was the perfect curve, concluded
that most natural motions must take place in circles. Yet
others supposed that there must be a sort of moral governance
in the universe; for instance, Anaximander the evolutionist
thought that all existing things must pass away in time, so as
to make amends for the injustice they had committed in
pushing their predecessors out of existence.

Out of all the resulting tangle of confused and inconsistent
speculations, two main schools of thought stand out with
some clearness. The visible universe consists of matter in
activity; one school concentrated on the matter and tried to
guess its nature, the other school concentrated on the activity
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and tried to guess its significance. One was concerned with
the actors, the other with the play; very roughly they corre-
sponded to our modern materialists and idealists. The first
school drew its strength principally from Ionia, the second
from Italy, consisting mainly of the Pythagoreans and their
followers.

IoN1AN MATERIALISM

It was natural that the Greeks, with their continual striving
after elegant generalities, should conjecture that all the varied
richness of nature could be explained by some simple formula.
They began by attributing it to some common substance out
of which the whole world was made. In the earliest epoch of
European science, the question which loomed largest in the
speculations of the philosophers was ‘What are all things
made of?’

Thales answered with the single word ‘Water’, but ob-
viously this answer did not mean the same to him as it would
to us. He said that ‘that which exists’ can take the three
forms of mist, water and earth, by which he probably meant
much what we mean when we say that matter can exist in the
gaseous, liquid and solid states. He chose water as the funda-
mental form because he took the outstanding characteristic
of the world to be its fluidity or wateriness; it was for ever
changing in ways which would be impossible for a solid
structure.

Anaximander the evolutionist took a different view, main-
taining that the first principle and basic constituent of all
things was ‘a continuous infinite medium’ which filled all
space. It was the first appearance of the so-called ‘ether’,
which remained in science until the present century.
Anaximander’s description of the physical functions of
his ether reminds us of the similar descriptions given by
the Victorian physicists, while his description of its philo-
sophical functions—‘out of it everything is generated, and
into it everything returns’—reminds us of the description of
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space-time (p. 294) given by the twentieth-century philosopher
Alexander.

Fifty years after Thales, his direct successor Anaximenes
(c. 585—525 B.C.) compared things in their essential nature to
air instead of water. The basic substance of the universe, he
said was, mveUpa—Dbreath, like the air we breathe; he held
that, just as ordinary air sustains our human life, so a more
general form of air sustains all the life of the universe. And
for Anaximenes, as for Thales before him, all things were
endowed with life. He further believed that the various forms
of matter changed into one another through processes of con-
densation and rarefaction. Thus when water was rarefied,
it became air, and when it was both rarefied and heated, it
became fire, which was thus nothing but heated air. He also
believed that the condensation of water produced earth, a
belief of which traces survived until the seventeenth century
(p. 262). Thus for Anaximenes the four elements—earth,
water, air and fire—which were later to figure so largely in
Greek speculative physics (p. 65), were all modifications of
one another.

Another 50 years passed, and Heraclitus of Ephesus (¢. 540~
475 B.C.) taught that fire, the most changing of all substances,
was the prototype of all things. Everything, he said, begins
as fire, but fire changes into water and water into earth. His
main doctrine was that everything is in a state of flux—mévra
pel, kal oUdtv péver (everything flows and nothing stands
still); we never step into the same river twice.

ATOMISM. An entirely different set of doctrines were
taught by the next Ionians of note, Leucippus of Miletus (of
uncertain date), and his pupil Democritus (c. 470—400" B.C.),
who quite possibly may also have been a Milesian. They held
that the universe consisted of nothing but unchanging atoms
and the space between them. The atoms were not only in-
divisible, as their name implied (&Téuvev=not to be cut),

* But some accounts say that Democritus lived to be 9o, 100, 104, 108
or 109 years old.
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but were also uniform, solid, hard and incompressible. Their
substance was indestructible, and so also was their motion;
an atom continued to move so long as nothing checked it.

There was nothing vital in this picture; the changes in the
universe did not result from intrinsic changes of the atoms,
but from their motions and rearrangements, which happened
from a compelling necessity. Thus the universe became a
machine following a predestined path.

These doctrines took the emphasis off human perceptions
and emotjons, which now became unimportant incidents in
the world, and stressed the existence of an objective world
external to man, independent of man, indifferent to man. In
brief, external nature had been discovered. The world which
hitherto had been man’s playground and pleasure ground
became his prison. Hitherto it had been permeated by beauty,
sweetness and warmth—the gifts of the gods to men—but
these were no longer part of nature; they were imaginings of
man himself. Democritus wrote: ‘According to convention
there is a sweet and a bitter, a hot and a cold; according to
convention there is colour. But in reality there are atoms and
the void. The objects of sense are supposed to be real, and
are usually regarded as such, but in truth they are not. Only
the atoms and the void are real.’

Physically these doctrines had much in common with
modern atomic theory, but they were based neither on know-
ledge nor observation. Philosophically they were almost
identical with present-day philosophical materialism and,
like this, they implied a negation of free-will. Man could not
choose what he would do; this had been decided for him long
ago by the arrangement of his atoms. Determinism had
entered science, but the Greeks called it ‘compulsion’—
&vé&ykn @uoios, the necessity of becoming.
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THE PYTHAGOREAN ‘ELEMENTS’

While the Ionians were picturing the universe as something
fundamentally simple, the Pythagoreans and the Sicilian
Empedocles of Agrigentum (c. 500-440 B.C.) were advocating
a more complex view of the world, replacing the one funda-
mental substance of the Ionians by four distinct ‘elements’
—earth, water, air and fire. Empedocles taught that every-
thing was formed of these four elements mixed in different
proportions under the influence of attractive and repulsive
tendencies, and as his thought made no clear distinction
between man and the inanimate world surrounding him, the
same was supposed to be true of man, the attractive and
repulsive forces now assuming the forms of love and hate.

The four elements were themselves formed by the attrac-
tions and repulsions of two pairs of contrasted qualities—hot
and cold, wet and dry. Thus there were combinations accord-
ing to the following scheme:

Dry Wet
Cold | Earth | Water

Hot | Fire | Air

We shall see how these ideas, remote from the truth though
they were, were destined to play no small part in the later
developments of physical thought.

Empedocles taught that the universe had begun as a chaotic
mixture of the four elements. First air was separated out of
the mixture, and then fire; these were followed by earth,
from which water was squeezed out. The heavens were
formed from the air, and the sun from the fire, while the
‘other things’ about the earth were formed of the remainder.

Empedocles made a more valuable contribution when he
taught that light travels through space at a finite speed; it
takes time to pass from one place to another, from the object
seen to the eye that sees.
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PLATO AND ARISTOTLE AS PHYSICISTS

While physics was still in this primitive stage of its develop-
ment, it met with two major disasters in the attitudes of two
great thinkers, Plato and Aristotle. Plato was unsympathetic
and even contemptuous, while Aristotle failed to understand
the function which physics ought to fulfil.

PLATO. We have seen that Plato was a mathematician of
no mean powers, who consistently professed a high regard
for mathematical studies. But this was because mathematics
dealt with things mental, and not because it opened the road
to a better understanding of things material; his admiration
was for pure mathematics, not for what we now call applied
mathematics, which did not exist in his day. Like the philo-
sophers of many ages, he saw that our only certain knowledge
is of the sensations that affect our minds. These may seem to
originate in an outer world of matter, but the existence of
such an outer world is only a hypothesis. Mind may be the
only reality, and the outer world only an invention of our
minds. Plato accepted a variant of this latter view; he saw
mind as the only fundamental reality, and the material world
only as a shadow of reality. We had come into the world, he
maintained, with a number of general ideas inborn in our
minds, such as the ideas of hardness, redness and sphericity.
These ideas he called ‘forms’. When we say we see a hard
red ball, we merely mean—so Plato said—that something
which is affecting our senses seems to fit into the forms, already
in our minds, of hardness, redness and sphericity. The object
may fit the forms well or badly, but in no case will the fit be
perfect; no material object can be quite so perfectly spherical
as our mental idea of a sphere, or so completely red as our
idea of redness. Plato, believing that perfection and reality
necessarily went together, argued that the eternal and un-
changing forms must be the true realities of the world, while
the material objects which come and go, and at best provide
only fleeting impressions and imperfect representations of the
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forms, have a lower degree of reality; their relation to the
realities is that of the circles which the mathematicians draw
in the sand to true circles. (We can see why Plato thought that
physical problems should be discussed as idealised by our
minds rather than as presented by our senses). Thus in its
ultimate essence the world resembles neither water nor air
nor fire nor hard atoms, but mind.

A modern scientist would challenge all this on the ground
that the Platonic forms are not inborn in our minds, but are
classifications which our minds create out of experience. He
would say, for instance, that a blind man cannot have the
form of redness in his mind, nor a deaf man the form of
trumpet-tone; if we find these forms in our own minds, it is
because we are not blind and deaf, but have seen and heard
much in our lives. But Plato, obsessed by his doctrine of
inborn forms, found the study of the shadowy substance we
call matter unimportant. More than most men he had a
vision, true or untrue, that the only thing worth while for
humanity was the search for the good and the beautiful—two
qualities which the Greeks identified so completely that they
used the same word for both. Thus he specially hated the
doctrines of Democritus which explained humanity, goodness
and beauty as mechanical manifestations of material atoms.
He never mentions Democritus by name, but is said to have
expressed a wish that all his books might be burned.

We can see his general attitude to physical science from some
remarks which he puts into the mouth of Socrates.* The
astronomer Anaxagoras (p. 60) had written a book which first
asserted that ‘In the beginning all things were mixed up, then
mind came and reduced them to order’, and then proceeded
to explain in mechanical terms how this had been done.
Socrates says that he had expected that the book would first
tell him whether, for instance, the earth was round or flat,
and then would go on to explain the reason for it, namely,
that ‘it is better that the earth should be as it is’ than that it

* Phaedo.
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should be any other way. He goes on: ‘For I could not
imagine that, when he had once said that these things were
ordered by mind, he would have assigned to them any further
cause except the fact that it is best that they should be as they
are. These expectations I would not have sold for a large sum
of money. From what a height of hope, then, was I hurled
down when I went on with my reading, and found my philo-
sopher forsaking mind and any other principle of order, and
having recourse to airs, ethers, waters and other eccentricities.’

There could hardly have been a more complete misunder-
standing of the aims and methods of physics.

ARISTOTLE. Plato’s attitude was disaster number one for
physics, but worse was to come from his pupil Aristotle. At
the early age of 17, Aristotle had left his birthplace Stagira
in the crude, semi-barbaric state of Macedonia, north of
Greece, where his father was court physician, to study with
Plato in Athens, and remained there until the death of his
teacher 20 years later. He then lived in Lesbos, one of the
islands off the coast of Asia Minor, for the five years 347-
342 B.C. After this he spent six years as tutor to the young
Prince Alexander of Macedonia who was later to be known as
Alexander the Great, the conqueror of the greater part of the
civilised world, and the founder of an empire which extended
from Greece to India and from Thrace to Egypt. In 334 B.C.
he returned to Athens where he became a public teacher and
founded the famous school of the Peripatetics. Here he does
not appear to have met with the unqualified approval of his
brother philosophers, many of whom objected that his
manners were suited to a Court rather than to an Academy;
a long dirty beard and shabby clothes were not for him. In
323 he again left Athens, and died the year after.

In his youth he had been noted for the voracity of his
reading; in mature years he acquired an encyclopaedic mind
which took all knowledge for its province, and so invaded
every branch of science. He wrote on a vast variety of sub-
jects, pouring out torrents of clear thought and good sense,

JGPS 4
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which were generally controlled by a penetrating judgement
and a profound store of knowledge. But in science his attain-
ments were very uneven; he was a forcible biologist, but a
feeble physicist. His biology was based on personal observa-
tion, and some competent judges consider him to have been
one of the greatest biological observers of all time. Some of
his observations retained their importance right down to
modern times, and his classification of the forms of life was
not superseded until the time of Linnaeus. But his acute
powers of observation led him nowhere in physics, since the
physical world is too complex for its secrets to be unravelled
by a mere inspection. Planned experiments are needed here,
and the idea of experimentation was utterly alien to the
outlook both of Aristotle and of his contemporaries.

In every experiment we assume that an event is an effect
which is preceded by a cause; we provide the cause and
observe the effect, thus studying one link in the cause-effect
chain which we believe to run throughout nature and to
govern its happenings. This cause-effect chain did not enter
into Aristotle’s thoughts. To the question ‘Why is so-and-so
(A) the case now?’ our modern answer is of the form ‘Because
so-and-so (B) was the case in the past’. But Aristotle’s reply
was of the form: ‘Because it is in the nature of 4 to be as it
is.” For instance, we answer the question: ‘Why is the moon
eclipsed?’ by saying that the earth has moved between the
sun and the moon. But Aristotle regarded it as a sufficient
answer to say, ‘Because it is in the moon’s nature to be
eclipsed’. ‘Itis clear’, he wrote, ‘that the nature of the thing
and the reason of the fact are identical.”*

Such a mentality obviously disqualified Aristotle as a
physicist. It has been suggested that he had done his bio-
logical work while living in Lesbos between the ages of 37
and 42, but produced his writings on physics after his return
to Athens. He was then already in the fifties, so that his mind

* See F. M. Cornford, Essay on ‘ Greek Natural Philosophy and Modern
Science’ in The Background to Modern Science, p. 11.
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may no longer have been impressionable to new ideas, but
became set in the mould of his biological thought; all science
may have seemed to him a matter only of observation and
description.

Apart from this, Aristotle still held an entirely homocentric
view of the world, seeing man as the centre of all creation, its
climax and final triumph. For him the universe was primarily
a universe of human sensations, and the ultimate truth about
anything was told by the sensations that it produced in the
human body; the most that we could ever know about honey
was that it was brown and sticky, wet and sweet. Aristotle
regarded these qualities as absolute, not as relative to the
mind that perceived them. He harnessed these bad philo-
sophical ideas to a bad system of mechanics. Democritus had
taught that a moving body continued in its motion until
something intervened to check it, but Aristotle interpreted
all motion as a gratification of natural inclinations—as though
all things were living organisms. Just as a seed wanted to
germinate and push its way up through the soil, so a body
which was heavy wanted to sink, and one which was light
wanted to rise; everything strove to reach its ‘natural place’
in the world. 'Thus smoke rose, and a stone fell. Convinced
from the biological analogy that all things must either attract
or repel one another, Aristotle accepted the four elements of
Empedocles—earth, water, air and fire—as constituents of
matter, but added a fifth, the ‘quintessence’, to form the
basic substance of the universe. To justify this, he argued
that two kinds of motion are possible, up-and-down and
circular. Of the four elements of Empedocles, air and fire
move up while earth and water move down. There must
obviously, then, be a fifth to move in circular motion, and
this can only be the ether of which the stars are made—an
ether which is more divine than the other four elements, and
must also be changeless, since there is no record of any change
having ever occurred in the outer heaven or in any of its parts.*

* Sir T. L. Heath, Greek Astronomy, p. xlvii.
4-2
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Aristotle is generally credited with the invention of formal
logic—the logic of rigorous proof—and some think this was an
even greater disaster to science than his physics. He was right
in insisting that no fact could be certain unless it had been
deduced by strict logic from other facts which were certainly
true, but he failed to see that this is just what we can never
do in science. In requiring all sciences to have the certainty
of mathematics, Aristotle imposed on them the limitations of
mathematics, which can never gain new knowledge, but only
transforms old, and presents it in a new dress. He wrote
voluminously on a great range of physical questions, but his
method was always that of deduction, and as his premisses
were almost invariably wrong, his conclusions were so like-
wise. Nearly 2000 years were to pass before the deductive
methods of Aristotle were discarded in favour of inductive
methods (p. 124), and then progress became rapid indeed.

In the meantime, the dead hand of Aristotle lay heavy on
physics. Had it been otherwise, free discussion and a blending
of the ideas of Democritus and Empedocles—atoms and
forces—might have given physics a good start, for it is
surprising how many of the basic ideas of modern physics
were foreshadowed in the speculations of these two men.

THE EPICUREANS AND STOICS

The period which followed the death of Aristotle was one of
general confusion and ferment—military, political and intel-
lectual. Alexander had conquered Greece, and the Greeks,
smarting under their military defeats, had lost their former
joyous self-assurance and irresponsible cheerfulness, and were
feeling the need for a philosophy or religion which would
instruct them how to live. Their easy-going Olympian
religion had never done this; Christianity would bring its own
solution in time, but the time was not yet.

Into this disturbed society were born the two new philo-
sophical systems of Epicureanism and Stoicism. Both were
appropriate to the grimness of the times. Epicureanism was
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a philosophy of contentment and happiness even under mis-
fortune, while stoicism was one of self-control and devotion
to duty. Both were primarily systems of ethics and religion,
but as both invaded the realm of science, they are of some
interest in the present book.

The Epicureans. Epicurus, the founder of the former
system, was born in Samos, one of the Ionian islands, in
341 B.C., to a life of feeble health and grinding hardship
which no doubt called for a new philosophy to make it toler-
able; and so he taught the pursuit of the simple life, of mental
calm, and of inward quiet. He was no scientist, despising
knowledge in itself, and particularly ‘the vanities of astro-
nomy’. He dismissed the calculations of Aristarchus on the
sizes of the sun and moon (p. 87) with the remark that the
sun was probably about as large as it looks, or perhaps
smaller, since distant fires often look larger than they actually
are. Indeed he accepted an estimate of Heraclitus (p. 44)
that the sun was about a foot in diameter; this would place
the sun at a distance of only 115 feet from our eyes.

He taught a wholly materialistic physics, which denied to
mind the position which Plato and Aristotle had assigned to
it as the fundamental ingredient of the universe. He had
studied the works of Democritus, and claimed that all existence
is corporeal (T6 T&v 0TI o®dpa); there can be nothing but
atoms and the void. There must be a void, or the atoms would
have no room to move about, and it must be infinite in extent
for it could only be bounded by something else of a different
nature, and this cannot exist if the atoms and the void form
the sum total of all existence. The atoms must be infinite in
number, otherwise they would drift and scatter through the
infinite void, not being kept in place by their collisions with
other atoms. The atoms dart about through the void with
incredible speeds, ‘swift as thought’, their rearrangements
continually giving rise to new worlds. Objects for ever emit
thin filmy images of themselves from their surfaces, and
these, travelling in all directions, give rise to sensations when
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they impinge on our bodies; these sensations give us our
knowledge of the world.

Epicurus was especially concerned to discredit the idea of
a divine governance of the world. The gods, he said, are finer
and higher than we are, but are just as much the products of
nature as ourselves, and so are equally subject to natural laws.
They cannot, then, govern the world, and are indeed in-
different to human affairs; man can still be master of his fate
and captain of his soul. In this way Epicurus tried to set men
free from what Lucretius described as the ‘burden of religion’,*
although he conceded that they might, if they so wished,
remain loyal to their traditional gods.

The Stoics. The other new philosophical system was
founded by Zeno, a Phoenician by extraction, who was born
in Citium in Cyprus, and came to Athens in 311 B.C., where
he established a school and taught in the Stoa or painted
Porch. His philosophy also was practical and suited to the
needs of the times. It too taught a renunciation of the world;
men were to be guided by their consciences and reason rather
than by their desires, affections or emotions. The best minds
and the noblest characters of the pagan world were either
adherents of Stoicism or came directly under its influence.

Like Epicureanism, it taught a completely material system
of physics; even such things as virtues and activities are de-
scribed as bodies (ccpoara). Every body was supposed to
consist of an active and a passive principle, these being
respectively the inert matter which could undergo change,

* Lucretius, De rerum Naturae, 1, 63.
‘When Man’s life upon earth in base dismay,
Crushed by the burthen of Religion, lay,
Whose face, from all the regions of the sky,
Hung, glaring hate upon mortality,
First one Greek man against her dared to raise
His eyes, against her strive through all his days. ..
Till underfoot is tamed Religion trod,
And, by his victory, Man ascends to God.’
(Translation by Gilbert Murray, The Five Stages of Greek Religion,
pp. 134-5).
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and the force causing this change. Thus there was a reason for
every change, and so for every happening and motion in
nature. T'wo thousand years before Newton, the Stoics intro-
duced the idea that every event occurred in accordance with
universal law. The stars which, it was now being discovered,
moved according to perfectly regular laws, must form part of
a majestic and purposeful plan. Thus the world must be
moving towards a perfection which had been designed by
God, but could be achieved in part by man, so that human
life became a thing of dignity and value.

These physical theories of the Stoics and Epicureans had
but little effect on the development of scientific thought in
Greece.

For the reputation of Aristotle stood so high that what he
had said was deemed unchallengeable; if Aristotle had spoken,
it was so, not only in the Greek world in which he lived, but
also in the medieval world which was to come. Here the
Christian Church supported his doctrines, which certainly
fitted the spirit of religion better than the materialism of
Epicurus and Zeno, and physics became crystallised in an
Aristotelian mould until men began to think for themselves
at the time of the Renaissance, until Stevinus and Galileo
began to experiment to discover whether things were as
Aristotle had said, and found they were not.

Tue GROWTH OF EXPERIMENT

Such were the main lines followed by Greek physical thought,
but it would be a mistake to think they were the only lines
along which thought tried to progress. The idea that the
nature of the universe could be unravelled by pure intellect,
and without any appeal to facts, carries its own condemnation,
and some of the Greeks must have been vaguely conscious of
this. Thus in spite of their general aversion from appealing
to facts, some of them did precisely this. Perhaps the first
instance is to be found in an observation of Anaximenes
(¢. 550 B.C.) that if we blow gently on the back of our hand,
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the breath feels warm, whereas if we blow violently, it feels
cold. Anaximenes interpreted these facts wrongly, but we
recognise the true experimental method of appealing to nature
for information, and noting her answer.

A few years later—possibly even earlier—the Pythagoreans
were experimenting on the pitch of musical sounds. It must
have been well known that deep-pitched sounds are produced
by large structures, and high-pitched sounds by small; the
lion roars, but the mouse can only squeak. The Pythagoreans
tried to establish a relation between size and pitch. Boéthius,
writing in the sixth century A.p., tell us that Pythagoras him-
self was passing a blacksmith’s forge, when he was struck by
the musical sequence of sounds given out by the hammers as
they struck the anvil. He weighed the hammers, and found
that the weights of four stood in the simple relation of
12:9:8:6,* while that of the fifth, which gave out a discordant
note, stood in no simple relation to those of the others.

Pythagoras is said to have followed this discovery by a
series of experiments on strings, and to have come upon
certain laws which still form the basis of the science of
acoustics. We know that strings which differ in length, but in
nothing else, produce notes of different pitch. When two such
notes are sounded together (or in succession, as the Greeks
would have sounded them) the combination may be pleasant
or unpleasant. The great discovery of the Pythagoreans was
that it is pleasant only if the lengths of the strings stand in
some quite simple numerical relation to one another, such as
two to one, or three to two. It is more than 2000 years since
they discovered the facts, but no one has yet found a com-
pletely satisfying explanation of them. We note them here as
evidence of the increasing reliance on experiment; inciden-
tally, they also establish acoustics as the oldest of the experi-
mental sciences.

Nearly a century later, we find Empedocles (p. 460) in-

* If this was so, it was a pure coincidence, for there is no clear relation
between the weights of hammers and the notes they produce from an anvil.
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vestigating the nature of air by experiment. He placed the
lower end of a tubular vessel in water, and proceeded as we
do with a pipette or dropper. So long as his finger closed the
upper end of the tube, the pressure of air inside kept the
water out. If he took his finger away, the water could enter,
and if he now again closed the end with his finger, the water
could not get out of the tube even though this were lifted
right out of the water; the pressure of the air outside the tube
kept the water in. He interpreted this as showing that air
was a substance, and was capable of exerting pressure. A few
years later, Anaxagoras repeated the experiment, and also
blew up bladders and showed that force was needed to com-
press them. 'T'he idea of the experimental appeal to nature was
by now becoming familiar.

GREEK ASTRONOMY
EARLY ASTRONOMICAL PICTURES

Most races, even the most primitive, have invented stories for
themselves to explain the general appearance of earth and sky,
the alternation of day and night, and the simpler astronomical
phenomena. Most, too, have devised cosmogonies to explain
how things came to be as they are. The Greeks formed no
exception, but their astronomy, like their mathematics, showed
the influence of their scientific predecessors, the Babylonians
and the Egyptians.

The Babylonians had pictured the universe as a vast room,
with the sky as its ceiling and the earth as its floor. This floor
was surrounded by water as a castle is by a moat, and on the
far side of the moat lay mountains which supported the dome
of the sky. More mountains covered with snow rose from the
middle of the floor, and in these rose the river Euphrates, the
centre of Babylonian life.

The Egyptians drew a similar picture, except that they put
Egypt at the centre of the floor, possibly imagining that the
yearly flooding of the Nile showed this to be the lowest part
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of the earth’s surface. Four huge columns supported a ceiling
from which stars were suspended like lamps.

The earliest Greeks adopted this general picture, but soon
began to improve upon it. At the time of Homer (say the
ninth century B.C.), they imagined the earth to be a flat disk,
with the ocean, which they called the river Oceanus, replacing
the surrounding moat. Above was the vault of heaven;
below lay Tartarus, the abode of the dead, forming a second
vault symmetrical with the vault of heaven.

THALES AND ANAXIMANDER. Inthe sixth century before
Christ, Thales and Anaximander again amended this picture.
Thales thought that the earth floated in water, while Anaxi-
mander detached it still further. Seeing that the stars revolved
round the pole star, he concluded that they were attached to
a complete sphere, the earth being suspended freely in space
at its centre, without support of any kind. He imagined that
the earth could stand in equilibrium in this way because it
was at equal distances from the other heavenly bodies—
almost as though he were already thinking of the earth as
acted on by gravitational forces from the other masses of the
universe.

This was an obvious improvement on the Babylonian,
Egyptian and Homeric pictures of the universe, none of
which could explain where or how the sun spent the night.
It was now possible for the sun to pass under the earth at
night, and not merely be carried round the encircling moat
in a boat, as the Egyptians had imagined. But the picture
was too revolutionary to command general assent; perhaps,
too, it called for too much mathematical imagination. Shortly
afterwards we find Anaximenes writing that the sun and the
stars do not pass under the earth, but the sphere to which
they are affixed turns round above the earth ‘as a cap can be
turned round on the head’—a conjecture which a minimum
of observation would have instantly disproved.

Anaximander did not make his earth a sphere, but a circular
disk or stumpy cylinder of thickness only a third of its
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diameter. He said that the sun was of the same size as the
earth, and that it moved round the earth in an orbit which
was 27 or 28 times as big as the earth, while the orbit of the
moon was 19 times as big as the earth. But neither reasoning
nor observation lay behind all this, only baseless conjecture.
Indeed, the Greek powers of observation were still lamentably
low. No one seems yet to have noticed that the bright part
of the moon’s surface always faces the sun, or to have con-
jectured that the moon owes its illumination to the sun.
Instead, we find Anaximander saying that the stars in general,
including the moon, had pipe-like passages projecting from
them, through which we see their light. The waxing and
waning of the moon resulted from such a passage being
alternately opened and closed; if it was altogether closed, then
an eclipse occurred.*

THE PYTHAGOREANS. In the century following Anaxi-
mander, many important advances in astronomy were made
by Pythagoreans, although as usual it is difficult to assign
ideas to their individual authors.

In place of Anaximander’s stumpy cylinder suspended
freely in space, Pythagoras is said to have believed that the
earth was spherical in shape, and rotated about an axis once
a day. The Pythagoreans also made the further great advance
of supposing that the earth did not form a fixed centre to the
universe, but revolved, with all the other planets, round a
central fire; one account attributes the idea to Philolaus
(p. 88), another to a certain Hicetas of Syracuse. If they had
taken the further step of identifying this central fire with the
sun, they would have made one of the greatest advances in
the whole history of science. But for some reason or other,
they never took this step. It has been suggested that the
central fire was really meant to be the sun, but that they did
not dare to say so from fear of encountering religious persecu-
tion such as afterwards befell Anaxagoras (p. 63). On the
other hand, Aristotle says that they were convinced that the

* Hippolytus, Refutatio omnium Haeresium.
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total number of moving objects in the sky must total up to
their mystical number ten. Towards this total the sun, moon
and five known planets contributed seven, and the earth and
the sphere of the fixed stars two more. To bring the tally up
to the necessary ten, they imagined a ‘counter-earth’ which
also revolved round the central fire. As they never saw either
the central fire or the counter-earth, they had to suppose
that the hemisphere of the earth on which they lived was
perpetually turned away from both. This is obviously incon-
sistent with the central fire being the sun.

The hypotheses of the central fire and the counter-earth
soon became untenable. Navigators were already beginning
to sail out of the Mediterranean to explore the coasts of Africa
to the south and of Europe to the north; soon they would
voyage round the coasts of Britain to the frozen seas beyond.
They saw many strange sights, but none to suggest the
existence of either a central fire or a counter-earth, so that
finally, from want of confirmation, these fell out of favour,
and with them fell the more valuable parts of the Pythagorean
teaching.

The general faith of the Pythagoreans in the all-importance
of numbers in the scheme of nature led them to imagine that
the distances of the various planets from the central fire must
stand in the ratio of simple numbers, and so must correspond
to the more harmonious intervals in the musical scale. Thus
they said that ‘the whole heaven is harmony and number’,
and believed that the planets produced music, inaudible to
us, as they moved in their orbits—the ‘harmony of the
spheres’.

ANAXAGORAS. Anaxagoras of Clazomenae (c. 488-4283.c.)
was a rich man who neglected his possessions so as to devote
himself to astronomy, saying that the object of being born is
‘to investigate the sun, moon and sky’, and ultimately got
into trouble for his rationalist views. He discovered the cause
of the phases of the moon, maintaining, so Aétius tells us,
that the moon’s obscurations month by month result from its
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following the sun which illuminates it, while its eclipses occur
whenever it falls within the shadow of the earth. Plutarch
says that ‘Anaxagoras was the first to put in writing, most
clearly and most courageously of all men, the explanation of
the moon’s illumination and darkness’.

Cleomedes, a Greek mathematician who wrote in the second
or third century A.p., tells us that the explanation did not

Fig. 13.

escape criticism.* Eclipses were said to have occurred when
both the sun and moon were visible above the horizon, and
this was thought to disprove the explanation of Anaxagoras.

* Kukhikfis Oewplas Meteidpoov,

t But Cleomedes says he doubts the alleged facts, suspecting that they
were mere inventions by ‘persons who desired to cause perplexity to the
astronomers and philosophers’. In any case, he says, if such eclipses did
occur, they can be adequately explained by refraction in the earth’s
atmosphere; this makes it possible to see both the sun and the moon when
they are really below the horizon. ‘It might possibly happen, in a moist
and thoroughly wet condition of the air, that the visual ray should, by
being bent, take a direction below the horizon and there catch the sun
just after its setting, and so receive the impression of the sun’s being above
the horizon.’
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Anaxagoras expressed other rationalistic and materialistic
views, refusing to see anything wonderful or divine in the
pageant of the heavens, and maintaining that the heavenly
bodies were of the same general nature as the earth, except
that they had become incandescent through rotation. He
thought that the sun was a vast mass of incandescent metal,
larger than the Peloponnese, while the moon had valleys and
mountains on it like those of the earth. He conjectured that
the universe had ‘started as a chaotic mass in which all things
were mixed together’. In this a vortex was gencrated, which
spread to ever wider circles, so that air, clouds, water, earth
and stones separated out in turn as the result of the circular
motion, the heaviest remaining near the centre. Finally,
‘in consequence of the violence of the whirling motion,
the surrounding fiery ether tore stones away from the
carth and kindled them into stars’—a cosmogony which
had much in common with the later ‘Nebular Hypothesis’
of Laplace (p. 239). Anaxagoras thought that other worlds
besides our own had been generated in the same way, and
were inhabited by men like ourselves, who had cities and
cultivated fields like our own, as well as their own suns and
moons.

These doctrines explained many things, but they did not
prove popular when Anaxagoras expounded them in Athens.
Plutarch tells us that the book of Anaxagoras was but little
esteemed ; it ‘circulated in secret, was read by few, and was
cautiously received’. We have already noticed how Plato
received it. Finally, the Athenians decided to prosecute
Anaxagoras for impiety and atheism; he was trying to take
away their gods—helpful and friendly beings, on the whole,
to whom they could look for help and comfort, and who were
susceptible to their entreaties and even to their bribes.
Aratus® (p. 13) writes: ‘Every way we stand in need of
Zeus. We are even his offspring; he, in his kindness to man,
points out things of good omen, rouses the people to

* Phaenomena.
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labour, calling to their minds the needs of daily life, tells
them when the soil is best for the labour of the ox and for the
pick, and when the seasons are propitious for planting trees
and all manner of seeds.”* The average Greek was reluctant
to surrender such friendly gods for masses of inanimate earth
and metal.

Others, more enlightened, found this array of anthropo-
morphic gods unsatisfying and, as Xenophanes said, ‘by
seeking, find in time what is better—one god, the greatest
among gods and men, like mortals neither in form nor in
thought, but all-seeing, all-hearing and wholly thought.
Without toil he sways all things by the thought of his mind
and abideth ever in the selfsame place, moving not at all.’
But these were equally unwilling to accept a rationalist inter-
pretation of the phenomena of the skies. As Plutarch wrote:
‘In those days they refused to tolerate the natural philosophers
and stargazers, as they were then called, who presumed to
fritter away the deity into unreasoning causes, blind forces
and unnecessary properties. Thus Protagoras was exiled and
Anaxagoras was imprisoned and was with difficulty saved by
Pericles.’

There is some doubt as to what actually happened to
Anaxagoras. One account says he was convicted and banished
from Athens, only the intervention of Pericles saving him
from death, while another says he was acquitted, but never-
theless found it prudent to leave Athens and return to his
native Jonia. In either case it is clear that the time for
rationalism in human thought had not yet arrived. Instead
there started an age-long conflict between religion and science;
religion had declared war and initiated that persecution of
science which was unhappily to recur so often and figure so
largely in the histories of both. In the case of Anaxagoras we
see the conflict in its earliest, simplest and crudest form, and
its very simplicity and remoteness from present-day con-
ditions make it particularly easy to understand.

* Translation by Sir T. L. Heath, Greek Astronomy, p. 112.
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PLATO. Astronomy, like physics, was unfavourably in-
fluenced at this time by the reactionary attitudes of Plato and
Aristotle. Plato’s scientific beliefs were not based on observa-
tion or knowledge, but simply on his individual views as
to what was most appropriate. The universe, he thought,
must have been shaped to fit human needs and desires. God
must be good, and so must have constructed the most perfect
of all possible worlds for us to live in. As the most perfect of
all shapes is the sphere, He must have made the universe
spherical. So also, as the most perfect curve is the circle, He
must have made the plancts move in circles. Motion, being
of divine origin, must be perfect in its regularity—so that it
was a great trouble to Plato that no perfect regularity could
be discerned in the planetary motions; he is said to have
urged all serious students to try to discover what set of
uniform and ordered movements would account for the
observed movements of the planets.*

Through most of his life, Plato took it for granted that the
earth must stand at the centre of the universe, but he seems
to have wavered on this in his later years, when, according to
Plutarch, he ‘regretted that he had given to the earth the
central place in the universe, which was not appropriate to
it’. Consideration of the supposed central fire now made him
‘regard the earth as placed elsewhere than at the centre, and
think that the central and chiefest place belongs to some
worthier body’. But he remained unshaken in his belief that
the plan of the universe could be better discovered from general
principles than from observation, and in his only scientific
dialogue—the Timaeus, the weakest of them all—he tries to
discover the plan from the wholly gratuitous assumption that
the structure is like that of a man—the macrocosm must, he
thinks, resemble the microcosm.

Nevertheless we learn, again from Plutarch, that hisinterest
in astronomy redeemed it from the reproach of atheism, and
made it a respectable subject for study: ‘ Through the brilliant

* Simplicius, De Caelo.
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repute of Plato, the reproach was removed from astronomical
studies, and access to them opened up for all. This was
because of the respect in which his life was held, and because
he made natural laws subordinate to the authority of divine
principles.’

ARISTOTLE. The general attitude of Aristotle was similar.
His observing powers, which were so successful in biology,
failed him as completely in astronomy as in physics. Like
Plato, he tried to deduce the plan of the universe from general
principles rather than from knowledge, and thought that it
must necessarily be modelled on the perfect figures of the
sphere and circle. He saw the universe as a system of con-
centric spheres, all having the earth as their common centre.
Outside the sphere of the earth came the sphere of the ocean,
beyond this the sphere of the atmosphere, and beyond this
the sphere of fire. Thus there were spheres of the four
elements in turn—earth, water, air and fire. Beyond the
sphere of fire came other spheres carrying the moon, sun and
the five known planets, and finally, beyond all, the sphere of
the fixed stars. Contrary to the teachings of the atomists,
Aristotle thought that some driving power must continually
be at work to keep the various spheres and their attached
planets in motion, and so postulated another sphere, external
to all the others, to provide the needed driving power—the
Prime Mover, which Aristotle identified with God himself;
it made all the stars and planets move in their various spheres
at a uniform speed, ‘as a beloved moves a lover’.

But Aristotle was extremely tolerant, and quite realised
that other views were tenable. ‘If those who study this
subject form any opinion contrary to that we have stated we
must indeed respect both parties, but be guided by the more
accurate.’

In his Meteorologica he conjectures that ‘the bulk of the
earth is infinitesimal in comparison with the whole universe’,
and goes on to say that ‘it is absurd to make the universe in
process of change because of so small and trifling changes on

jars 5
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earth, when the bulk and size of the earth are surely as nothing
in comparison with the whole universe’. He also makes a
reasoned defence of the doctrine of the central fire, but it is
a typical instance of his reaching wrong conclusions through
arguing from faulty and unscientific principles. After quoting
the Pythagorean view that ‘at the centre there is fire, and the
earth is one of the stars’ [i.e. planets], he continues: ‘Many
others might agree that we ought not to assign the central
place to the earth, looking for confirmation to theory rather
than to observed facts’, the theory being that as fire is more
honourable than earth, it deserves, and so must have obtained,
the more honourable place. ‘Arguing from these premisses,
they think it is not earth that lies at the centre of the sphere,
but rather fire (p. 59).

EUDOXUS. Leaving this backwater and returning to the
main stream of astronomical thought, the first astronomer of
note that we meet is another Pythagorean, Eudoxus of Cnidus
(409-356 B.c.). He was a good observer, and made very
accurate observations on the motions of the planets.

We have seen how Plato had propounded the problem of
finding what set of uniform and ordered circular movements
would account for the observed planetary motions. Eudoxus’s
efforts to solve this problem led him to propound a cosmology
which was in many ways retrograde. His Pythagorean pre-
decessors had already set the earth moving through space like
the other planets; Eudoxus not only put it back at the centre
of things, but made it stand still there. Round this fixed centre
he supposed that a number of spheres revolved. The outer-
most of these was simply that sphere of Aristotle’s which had
the fixed stars attached to it; to the inner spheres no stars or
planets were directly attached, but other spheres, to which
were attached yet other spheres, and so on. To the final
spheres of this series were attached the sun, moon and the
five planets, which thus revolved round the central earth in
a highly complicated way. To fit his observations, Eudoxus
found he needed three spheres each for the sun and moon, and
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four for each of the planets, making a total of twenty-seven
spheres. Then the more exact observations of his pupil
Callippus showed that twenty-seven spheres were inadequate;
thirty-four were now needed. Here we have the germ of the
complicated system of cycles and epicycles which, under the
leadership of Ptolemy, was to dominate and harass the
astronomy of the next 2000 years.
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During all this time, explorers continued to explore the
surface of the earth and notice how the length of day varied
from place to place, being dependent on the latitude but not
on the longitude. This was supposed to indicate that the earth
was spherical in shape. Finally, Ecphantus, one of the last of
the Pythagoreans, asserted that this sphere turned on its own
axis.

About 350 B.C., Heraclides of Pontus (3838-315 B.C.)
taught similar doctrines, and added that while the sun and
major planets revolved round a fixed earth, Venus and

5-2
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Mercury revolved round the moving sun—an anticipation
of the scheme Tycho Brahe was to put forward 19oo years
later.

Thanks to Ecphantus and Heraclides, astronomy had now
acquired the idea of an earth which was so little fixed that it
could rotate under a canopy of fixed stars, and of planets that
could revolve round the sun.



CHAPTER III

SCIENCE IN ALEXANDRIA
(332 B.C.—A.D. 642)

THE three centuries we have just had under discussion
formed a sort of intellectual ‘golden age’ in which science
made more progress than in three millennia of Babylon and
Egypt. But as this period approached its end, a change set
in, and by the middle of the fourth century B.C., Greek
culture had definitely begun to decline, and Greek science
with it. A few years later, the decline was accelerated by
the invasion and military conquest of the country by Alex-
ander the Great. Yet events which seemed to be disastrous
to science at the time may perhaps have been a piece of good
fortune in disguise.

For Alexander now decided to celebrate his victories and
consolidate his empire by building a new capital which was
to be the most magnificent city in the world. He chose a site
on the flat lands where the Nile ran into the sea, and called
the still unborn city Alexandria, after himself.

He died in 323 B.C., his grandiose scheme still incomplete,
and his kingdom was divided among all who could lay hands
on a piece of it. Egypt fell to the lot of one of his generals,
Ptolemy, who chose the still unfinished Alexandria as his
capital and, more ambitious even than Alexander, aspired to
make it the world’s capital not only for government and
commerce but for culture and intellect as well. To this end
he chose a site adjoining his palace, and on it began to build
a ‘Museum’ or Temple of the Muses, which was roughly the
equivalent of a modern university. Such was the origin of
the city which was to replace Athens as the cultural capital
of the Mediterranean world, and of the university which was
to provide a home for science for a thousand years to come.
These thousand years form the subject of the present chapter.
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By about.300 B.C., the university was ready for occupation,
and Ptolemy proceeded to staff it with the most eminent
scholars of the time; many came to it from Athens, and by so
doing carried the torch of learning a step back from west to
east. When Ptolemy died in 285 B.c., his successor Ptolemy 11,
no less ardent to make Alexandria the cultural centre of the
world, established the famous library which was accounted
one of the seven wonders of the world. It was divided into
the four departments of literature, mathematics, astronomy
and medicine, each with its own librarian or curator, and is
said to have accumulated no fewer than 400,000 manuscripts
in the first forty years of its existence.

Fortune alternately smiled and frowned on science in its
new home. First there was a series of brilliant successes,
made possible in part by the official support of the reigning
dynasty, but in part also by a change of method which accom-
panied the move from Greece to Egypt—a change, as we shall
see, from dreamy speculation about the universe in general
to precise attacks on clear-cut problems.

Then came a time when science began to wilt again—the
period of stagnation before the Christian era. The spirit of
progress seemed to have deserted science, in part because
many subjects of investigation seemed to have reached their
natural endings, and nothing new was found to take their
place; discoveries now gave place to comments, criticisms
and reviews of past triumphs.

External influences also became less favourable. After
governing Egypt for nearly 300 years, the Ptolemaic dynasty
came to an end in 30 B.C. with the death of Cleopatra, when
the Romans defeated the native Egyptian troops and took
over the administration of Egypt. The Romans were great
soldiers, great administrators and lawgivers, great engineers
and mechanics in an unimaginative practical way, but they
were barely even sympathetic to science; their world was the
world of affairs, and not of abstract thought. Thus the coming
of Alexandria under Roman rule might well have proved
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disastrous to science, yet the result was not bad. Showing
their usual tolerance towards their subject races, the Romans
allowed the Greek language and a general Greek atmosphere
to prevail in Alexandria, so that life soon resumed its normal
course and the University, again full of students, once again
became a centre of learning and research,

The real danger came later and from quite another quarter.
Christianity, after starting from the humblest of beginnings,
conquered the Mediterranean world more thoroughly than
ever the Roman legions had done. The Roman conquerors
had introduced a new technique of government, but the
Christian conquerors brought with them a new technique of
life and a revolutionary conception of human aims and
destiny—how revolutionary it is hard for us of to-day to
understand. Their citizenship was in heaven, their life here
only a preparation for a future life elsewhere, so that they
saw the world of matter only as a prison-house, and the vault
of heaven only as a veil; both were transitory and utterly
insignificant in comparison with what lay beyond. Within the
lifetime of some of them, a day was to come when the stars
would fall from heaven, and the sky be rolled back like a
scroll to reveal a Judge seated on his Throne. ‘Then God
whom Jesus had declared to be the loving Father would
change his character, reverting to the ferocity and tyranny
of his Old Testament habits: even Jesus himself who had
once prayed ‘Father, forgive them’ would now lay aside
mercy and deal out justice and vengeance: sinners for whom
he had formerly sought as a shepherd for his lost sheep
would now be flung into hell and there would suffer endless
flames and torments——a spectacle to increase the beatitude
of heaven.’”” Tertullian had written: ‘ How shall I admire, how
laugh, how rejoice, how exult, when I behold. . .so many sage
philosophers blushing in red-hot flames with their deluded
scholars.” What would it profit a man on that last day of
wrath that he had spent laborious years in examining how the

* C. E. Raven, Science, Religion and the Future, p. 21.
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bars of the prison-house were made, or in studying the
heavenly veil that had already passed away? Surely it was
better to prepare for the judgement to come?

Holding such beliefs, the Christians could hardly be sym-
pathetic to the study of science, especially as many of them
were narrow fanatics; their religion was their all and, unlike
the paganism it was supplanting, it knew nothing of tolerance
or of magnanimity towards those of other opinions. This
mattered little at first, for the Christians were few and un-
influential. Even at the beginning of the fourth century, only
a small fraction of the population was Christian;* the pagan
writers barely mentioned their existence, even the great
moralists such as Seneca and Marcus Aurelius either passing
them over in silence or speaking of them with contempt.

Then came the year 312, a landmark in human history, when
Constantine the Great, the illegitimate son of a Roman officer
and a Serbian innkeeper, who had been elected Emperor
of Rome by the army in the field, suddenly embraced the
Christian religion.! In 390 the pagan religion was forbidden
by edict throughout the Empire, and henceforth Christianity
reigned supreme, save in out-of-the-way country places, where
the simple villagers would still assemble to sing hymns and
offer modest sacrifices to the gods of their forefathers.

Twenty years later Rome was captured by Alaric and his
barbarians, and when these too embraced the Christian faith,
the ‘dark ages’ fell upon Europe—the ages of domination of
all human thought and of most human activity by the priest-
hood, ages which ‘should probably be placed, in all intel-
lectual virtues, lower than any other period in the history of

* According to Bury, only about a fifth. History of the Later Roman
Empire, 1, 366.

t He does not appear to have done this from any moral conversion or
mental conviction, but merely because his use of a Christian emblem
seemed to bring him victory in the field, Eusebius relates that he and
his troops saw a flaming cross in the sky with the inscription &v ToUte vika
(in this conquer), and that, having put this emblem on his banners, he
won four victories in rapid succession.
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mankind. A boundless intolerance of all divergence of opinion
was united with an equally boundless toleration of all false-
hood and deliberate fraud that could favour received opinions.
Credulity being taught as a virtue, and all conclusions being
dictated by authority, a deadly torpor sank upon the human
mind, which for many centuries almost suspended its action.*

In the present chapter our task will be to trace out the
fortunes of science from the time of its decline in Greece and
rise in Alexandria to the time when this deadly torpor gripped
the human mind, a period of nearly a thousand years.

The scene will be laid almost exclusively in Alexandria, for
in spite of the various disadvantageous influences at work,
Alexandria had established itself so firmly as the cultural centre
of the world that nearly all the great scientists of the next
millennium either taught or studied there, or both. The
scientific spirit exercised itself mainly in the two subjects of
mathematics and astronomy. The Alexandrian mathematicians
included some of the greatest that the world has seen—
Euclid, Archimedes and Apollonius. The same is equally true
for astronomy, the great names here being Aristarchus,
Eratosthenes, Hipparchus and Ptolemy. Let us now examine
Alexandrian science in detail, commencing with mathematics.

MATHEMATICS IN ALEXANDRIA

EUCLID. The first of the great Alexandrian mathematicians,
Euclid, was born about 330 B.C., probably of Greek parents,*
and died about 275 B.c. We do not know where he was
educated, but some think that Athens is indicated, both by
his writings and by his knowledge of the works of Plato. He
became curator and librarian of the mathematical department
of the Alexandrian Library, and he taught as well.

By far the most famous of his works is his Elements of
Geometry, which determined the way geometry was taught in

* Lecky, History of European Morals, 11, 13.
t But see p. 25.
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our schools until quite recently. We do not know what purpose
the book was designed to serve—a text-book for students, or
a compendium of geometrical knowledge, or a scholar’s effort
to demonstrate that the facts of geometry are inevitable truths
which can be deduced from axioms of indisputable validity.
Actually it serves all three purposes very well, as perhaps it
was meant to, but it is the last which interests us most to-day.

For the modern geometer does not think of the axioms as
being indisputably true. He agrees that if they are true, the
propositions follow as a matter of pure logic. But he regards
the axioms, and especially the famous twelfth axiom,* as
specifying properties of space. He has to deal with many
kinds of space, but there is only one—Euclidean space, he
calls it—in which the twelfth axiom is universally true. In
this space, but in no other, the theorems of Euclid, as, for
instance, the famous theorem of Pythagoras, are invariably
true. The properties of other kinds of space are most easily
specified by stating the manner and extent in which the
theorem of Pythagoras fails in them. All this has been brought
into the field of practical science of late, because the theory
of relativity (p. 294) depicts the world as existing in a space in
which Euclid’s axioms are not generally true.

The Elements consists of a coherent treatise of twelve books,
in which a sequence of propositions is deduced by strict logic
from the axioms just mentioned, together with a thirteenth
book of disconnected oddments forming an appendix. Possibly,
as de Morgan once suggested, the whole work was a product
of Euclid’s old age, which death prevented his ever putting
into final shape. It is largely a compilation. Many of its
propositions appear in an earlier History of Mathematics which
Eudemus wrote when Euclid was only about ten years old,
while some of its contents were certainly known to the

* ‘If a straight line meets two straight lines so as to make the interior
angles on one side of it together less than two right angles, then these
straight lines will meet if continually produced on the side on which are
the angles which are together less than two right angles.’
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Pythagoreans—as, for instance, the theorem that 4/2 is in-
commensurable, which Euclid gives twice (Elements, book X,
props. 9 and 117). Many of Euclid’s proofs are tedious, slow-
moving and obvious, but others show great ingenuity. The
following is an example.

We know that numbers can be divided into the two classes
of composite and prime, a composite number being one which
is the product of smaller factors, as, for instance, 6 (which
equals 2 x 3) and 8 (which equals 2 x 2 x 2), while a prime
number is one which cannot be so split up, as for instance
5 or 7. If we examine the first six numbers after 1, we find
that two-thirds of them are prime, namely, 2, 3, 5 and 7. If
we examine twelve numbers instead of six, the proportion of
prime numbers falls to one-half, the primes being 2, 3, 5, 7,
11 and 13. If we take 24 numbers, it further falls to three-
eighths; with 48 numbers it is reduced to five-sixteenths; with
96 numbers to one-quarter, and so on. The further we go, the
smaller the proportion becomes, the reason being that fresh
divisors are continually becoming available. The question
now arises: If we go far enough, shall we ever come to a range
in which none of the numbers are primes? Or, in other words,
is there a largest prime, beyond which no other prime
numbers exist? It appears to be a terribly intricate problem;
if the reader does not think so, let him try to solve it before
reading further. Yet Euclid solves it by the simple remark
that if there could be a largest prime number N, then the
number (1x2Xx3x4x§x...x N)+1 would have to be both
prime and not-prime, which is absurd. It would have to be
not-prime because it is greater than N, which we are supposing
to be the largest prime number. But it would also have to be
prime; no prime number can be a factor of it, since division
by any one of the primes 1, 2, 3, ..., N always leaves 1 over as
a remainder. Thus the supposition that there is a largest
prime N leads to contradictory conclusions, whence it follows
that there cannot be a largest prime.

Besides his Elements Euclid wrote four other books on
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geometry, and also books on astronomy, music and optics,
only the last of which has survived. This states the laws of
reflection of light accurately; the laws of refraction were not
yet known. But Euclid took a wrong view as to the nature of
light. The Pythagoreans had taught that light travelled from
a luminous object to the eye in the form of particles—an
anticipation of the corpuscular theory of Newton and of the
present-day particle-picture of light (p. 331). Empedocles had
taught that light was a sort of disturbance which travelled
through a medium, taking time on its journey—an antici-
pation of the undulatory theories of the eighteenth and nine-
teenth centuries (p. 254), and of the wave-picture of to-day.
Plato and others had imagined, quite erroneously, that light
consisted of rays which travel in straight lines from the eye
until they strike an object, which the eye then sees. When we
look for an object, they thought, we poke about for it with
these rays, just as we might grope about for something in the
dark with our hands. Euclid accepts this last alternative,
arguing that light cannot proceed from the object into the
eye, since if it did, ‘we should not, as we often do, fail to
perceive a needle on the floor’.

ARCHIMEDES. Greatest of all the Alexandrian mathema-
ticians, and best known after Euclid, was Archimedes (287-
212 B.c.). After studying in Alexandria, he returned to his
native Sicily where he was finally killed by the Romans in
Syracuse, when they took the city after a three years’ siege.
Like Pythagoras and Plato, he held that learning should be
acquired for its own sake and not for gain, or for its practical
applications, but as his life fell in times of war, his great
mechanical ingenuity had to be turned mainly to military
ends. Heissaid tohave set fire, by mirrorsand burning-glasses,
to the ships which were besieging Syracuse—a story which
many doubt*—and to have devised catapults which kept the
besiegers away from the walls of the city. Among his more

* On this see W. W. Rouse Ball, 4 Short Account of the History of
Mathematics, p. 67.
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peaceful inventions were the ‘screw of Archimedes’, a device
for raising water which was in use in Egypt until fairly recent
times, and a cog-wheel and screw arrangement for launching
ships. But he is best known for his method of measuring the
specific gravities of substances. He put a known weight of
the substance into a vessel which was already full of water, and
weighed the water which flowed over the rim. If, for instance,
he put 12 Ib. into the vessel, and found that 1 lb. of water
overflowed, he knew that his mass of substance weighed 12
times as much as an equal volume of water, so that its specific
gravity was 12. A well-known story records how he detected
in this way the fraud of a goldsmith who had adulterated gold
which had been given him to make a crown. It adds that he
thought of the method while in the baths and ran through the
streets crying eUpnka, sipnxa.

His work in mathematics was of immense range and variety.
Many of the common formulae of geometry are attributed to
him—7? for the area of a circle (where = is the ratio of the
circumference to the diameter), 477% and 47 for the surface
and volume of a sphere, and the corresponding formulae for
cones and pyramids.*

Archimedes also arrived at a very '
good approximation for the value of
m, using what was known as the
‘method of exhaustions’. The smallest
square which can completely enclose
a circle of radius 7 is of area 472, while
the largest square which can be en-
closed in the circle is of area 272
(fig. 15). Plainly, then, the area of the -
circle must be something between Fig. 15.
2r? and 47%. If we had drawn regular hexagons instead of

* Archimedes says that the formulae for the volumes of a pyramid and
a cone were first given by Democritus, but without proof, and that proofs
were first given by Eudoxus. But the formula for the volume of a pyramid
is to be found in the Moscow Papyrus (p. 12) of at least a thousand years
earlier, as is also the formula for the area of a hemisphere (p. 12).
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squares, we should have found the closer limits 2-59872 and
3-46472, while octagons would have given the still closer limits
2-8287% and 3-3147%. The more sides the polygons have, the
more closely they will grip the circle, and the narrower the
limits they will provide. With g6-sided polygons, the limits
are found to be 3-13957% and 3-14267% whence of course the
value of # must lie between 3:1395 and 3-1426. Archimedes
used a polygon of g6 sides, but introduced certain numerical
approximations* which brought him to the result that = must
lie between 33{ (or 3-1408) and 343 (or 3:1429). The true
value of = is of course 3-1416.

Archimedes also wrote a number of small treatises on
various subjects, such as the principles of the lever and pulley,
on spirals (especially the well-known ‘spiral of Archimedes’),
on the area of the parabola, on arithmetic, and so forth. Most
of these are lost, but the two following examples of his
arithmetic which have survived are of interest as showing the
high level to which he attained.

The Greeks were still using letters to denote numbers, and
a variety of systems was in use. In Alexandria they repre-
sented the numbers from 1 to g by the first nine letters of the
Greek alphabet (« to ¢), the tens from 10 to go by nine more
letters, and the hundreds from 100 to goo by yet another
nine.' All numbers from 1 to 999 could be represented in this
notation, and further numbers up to 99,999,999 by adding
superscripts and subscripts. But the clumsiness of the system
made recording and manipulation difficult even for small
numbers, while there was not even a notation for very large
numbers. Archimedes proposed to deal with the latter by
taking 100,000,000 as a new unit, and that the square, cube,
etc., of this should be treated as additional units ‘of the second,
third and so on’ orders. If, as in modern mathematics, we
denote a 1 followed by any number 7 of zeros by 10", then

* Sir T. L. Heath, Manual of Greek Mathematics, pp. 295-309.
t As the Greek alphabet only contained 24 letters, it was necessary to
supplement these by two obsolete Greek letters, and one Phoenician letter.
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Archimedes proposed taking 10® as his first new unit, while
the others would be 108, 10%, 1032, and so on—just as we
take a million as a sort of unit, and also speak of billions,
trillions, quadrillions, and so on. To illustrate the working of
his proposed system, he calculated the number of grains of
sand that would be needed to fill the universe. Assuming
that 10,000 grains of sand can be put into a sphere one-
cightieth of a finger-breadth in radius, and that the diameter
of the universe is less than ten thousand million stadia (about
a thousand million miles, which is only slightly more than the
diameter of Jupiter’s orbit), he calculates that the number will
be less than 10%.* Here we have the prototype of the kind of
calculations which figure so largely in modern astronomy.

Archimedes points out that the different units 10% 108,
1024, etc., form what we now describe as a geometrical progres-
sion, and makes the pregnant remark that the product of the
mth and nth units is equal to the (7 + n)th unit, or, in modern
language, that ™ x ™ =xm+", Here we have the first known
statement of the law of indices, the germ out of which calcula-
tion by logarithms was to emerge 2000 years later.

The second example is of a very different type. Archimedes
proposed the following problem as a challenge to the mathe-
maticians of Alexandria. ‘The sun had a herd of cattle of
different colours—piebald, white, grey and dun. The number
of piebald bulls was less than the number of white bulls by
(3+1%) times the number of grey bulls, and less than the
number of grey bulls by (} + £) times the number of dun bulls,
and less than the number of dun bulls by (3 +73) times the
number of white bulls. Furthermore, the number of white
cows was (§+1) times the total number of grey cattle (bulls
and cows together), while the number of grey cows was (} + 1)
times the number of dun cattle, the number of dun cows was
(3+%) times the number of piebald cattle, and the number of
piebald cows was (}+%) times the number of white cattle.
How many bulls and cows were there of various colours?’

* Yappitns (the Sand-reckoner).
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We may think it easy to rewrite these data in the form of
simultaneous linear equations which, though complicated,
will not be difficult to solve; but such methods were unfamiliar
to Archimedes, and, in any case, the arithmetic is far from
simple. There is, of course, no unique solution, since the
data only determine the proportions, and not the absolute
size, of the herd. Archimedes gave the solution:

piebald 331,950,960 bulls, and 435,137,040 cows,
white 829,318,560 bulls, and 576,528,800 cows,
grey 596,841,120 bulls, and 389,459,680 cows,
dun 448,644,800 bulls, and 281,265,600 cows,

in which all the numbers are multiples of 8o, so that a simpler
solution is obtained by dividing them all by 8o. It is almost
unthinkable that Archimedes could have manipulated numbers
of this magnitude in terms of the clumsy system of numeration
then in common use, so that he may have reached his results
by some other and private system, and then translated it back
to the common system to announce it to the world. The
example we gave before this suggests that he may even have
had a system not unlike our own of to-day.

Archimedes was undoubtedly the greatest of all the Greek
mathematicians, and would have appeared still greater had
not the accidents of war and siege restricted his activities and
shortened his life. When the Romans finally took Syracuse,
the soldiery were ordered to spare his life and home, but,
either through accident or design, this was not done. The
Roman conquerors built him a splendid tomb, on which was
engraved a diagram of a cylinder circumscribing a sphere, to
commemorate the way in which he calculated the area of a
spherical surface. It had been his own wish to be buried
under such a tomb.

HERO OF ALEXANDRIA. From Archimedes, our thoughts
turn naturally to Hero, another Alexandrian mathematician.
His date is uncertain, but he was probably a full century, and
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possibly several centuries, after Archimedes.* He possessed
much the same kind of mechanical ingenuity as Archimedes,
although to a lesser degree, and displayed the same neat
mathematical craftsmanship. But Archimedes was a mathe-
matician by choice, and a mechanic and inventor only by
necessity, whereas in Hero the parts seem to have been
reversed. He invented a great number of conjuring tricks and
mechanical toys, one of the more noteworthy being a steam
engine. Steam was produced by boiling water, and passed
into a hollow tube which could rotate about an axis. Four
nozzles led out of this tube to the outer air, all so bent that
the steam escaping through them set the tube rotating by
its back-pressure—in the manner of the jet-propelled aero-
plane. Here is the first known instance of steam pressure
being used to translate chemical energy of burning fuel into
energy of motion, the principle underlying the steam engine
of to-day. Hero is also said to have devised the first penny-
in-the-slot machine recorded in history.

On the abstract side, Hero did
some good mathematical work, A
his studies in optics being of AN
special interest. Euclid had stated NN
that when light is reflected from ‘
a smooth surface, the angle of
incidence is equal to the angle of
reflection. Hero showed that the
same law can be put in the alter-
native form that the light follows
the shortest path from point to
point, subject to the condition that .
it must strike the mirror at some / ~
point of its journey. Thusif ABC ¢
in fig. 16 is the actual path,
this is shorter than AB'C or AB’C, or any other similar
path. Hero does not appear to have attached any special

* Sir T. L. Heath, Manual of Greek Mathematics, p. 415.
jGPs 6

Fig. 16.
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importance to this result, and little suspected that he was in
fact introducing a new and far-reaching principle which was
to develop into one of the most important of all the methods
of mathematics.

APOLLONIUS. We have seen how Menaechmus introduced
the conic sections into mathematics, but made no great use
of them. FEuclid and Archimedes also worked on the curves,
but most of their writings are lost. Then came Apollonius
(260-200 B.C.), a mathematician who had studied at Alexan-
dria for many years and probably taught there as well, to
infuse new life into the study. In brief, he did for the conic
sections what Euclid had done for the circle a hundred years
earlier, writing a treatise which was so comprehensive that
centuries were to pass before any substantial additions were
made to the subject. It contained about 400 propositions,
and was divided into eight books: we know their contents
fairly well, for seven of the eight are still extant, four in the
original Greek text, and three more in Arabic translation.
Besides this, we have comments on the whole work by Pappus
(fourth century A.n.) and Eutocius (sixth century A.D.).

Menaechmus had imagined the various conic sections to
be obtained from sections which were always at right angles
to the surface of the cone, and found that three different curves
originated in cones of which the angles were respectively less
than, greater than, and equal to, a right angle.

Apollonius now showed that all three curves can be
obtained from a single cone of any angle, by cutting the
sections at different angles. We can see this for ourselves by
flashing an ordinary electric torch on a floor or wall. The
torch throws out a single unvarying cone of light, and we sec
different cross-sections of the cone by letting the light fall on
the floor at different angles. If we point the torch vertically
downwards, we see a circular patch of light on the floor
showing that the curve of cross-section is a circle. But if we
turn the torch through a small angle, the patch of light
becomes elongated, and the curve of section is an ellipse (or
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elongated circle). If we turn the torch until it points horizon-
tally, the curve of section becomes a parabola. If we turn the
torch still farther in the same direction, so that it now points
slightly upwards, the curve of section becomes a hyperbola.
It is usual to think of the cone as extending in both directions
from its vertex, a state of affairs we cannot reproduce with
our torch. When we think of the cone in this way, the
hyperbola consists of two detached curves as in fig. 12
(p. 40).

Apollonius also gave their present names to the conic
sections, parabola meaning ‘the application’, ellipse ‘the
deficiency’, and hyperbola ‘the excess’.*

The conic sections have now acquired a special importance
from their frequent occurrence in nature, but the Greeks
knew nothing of this, imagining that most natural motions
must necessarily take place in circles. This view had to be
abandoned when Kepler found in 1609 that the planets
moved in conic sections, and when Newton showed in 1687
that they had to do this if their motion was determined by
the gravitational attraction of the sun. Conic sections became
even more important when modern physicists began to
picture the atom as electrified particles moving round attract-
ing centres in conic sections.

While these curves have become important, the Greek
method of studying them has fallen into disuse. The method
was to construct a chain of propositions, each being deduced
by strict logic from those which preceded it—as Euclid did
in his Elements—and so forming a compendium of results.
But such a compendium has now become about as useless as
the compendium of arithmetical results which Ahmes tran-
scribed in his papyrus has become, now that modern methods

* The appropriateness of the names will be seen if the equations of the
curves are written in the forms:
y?=uax (the parabola),
y?=ox — Bx? (the ellipse, y* being in deficiency by Bx?),
y?=ox+ Bx? (the hyperbola, »* being in excess by Bx?).
6-2
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of handling numbers provide an almost effortless short cut
to any result we may want at any moment. The purely
geometrical methods of Menaechmus, Euclid and Apollonius
have been similarly superseded by what is known as ‘ana-
lytical geometry’. This is usually said to have been the
invention of Descartes (1596-1650) and Fermat (1601-65),
and will be explained when we come to their period, but it
was probably in use long before their time, and quite possibly
even by Apollonius. Its methods are incomparably more
direct, more powerful and more certain than the groping
methods of Greek geometry.

These latter methods had reached their natural limit with
Apollonius, so that geometry lay almost stagnant through the
great scientific calm that ushered in the Christian era, and for
many centuries after. In the second half of the fourth century
A.D., one geometer of outstanding ability appeared in Pappus
of Alexandria, but he had the misfortune to be born out of
his time, when the inttrest in geometry was already dead.
His only surviving work, Zwaywyt) (the Collection), is a
compendium of mathematical knowledge, and is of interest
because it describes the contents of other books that have
since been lost. Mathematicians still associate the name of
Pappus with a problem which he propounded in this book,
but only partially solved, namely, to find the path of a point
which moves so that the product of its distances from a
number of lines stays always proportional to the product of
its distances from a number of other lines. Euclid and
Apollonius had solved certain simple cases of this problem,
and Descartes solved it in its general form (p. 148); indeed, it
is said to have been this that led him to the invention of
analytical geometry.

DIOPHANTUS. At about the same period as Pappus, we
meet another great Alexandrian mathematician in Diophantus,
who is usually credited with the introduction of algebraic
methods into mathematics, and was certainly the earliest of
known writers to make a systematic use of symbols. He
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employed them to denote powers, equality, the negative sign,
and so forth, although it may be that others whose books are
now lost may have done so before him.

We have already noticed how Euclid proved theorems of
geometry which were equivalent to algebraic formulae, the
reason for their geometrical setting being that the Greeks of
his time usually thought of quantities in terms of lengths and
areas. To take a well-known example, Euclid presented the

theorem that (a+Db):=a+2ab+b?

in the geometrical form that ‘the 4 c B
square on AB (fig. 17) is equal to
the sum of the squares on AC and
CB, together with twice the rect-
angle of sides AC, CB’, and up to
the time of Diophantus, it was
unusual to announce theorems
which did not admit of a geo-
metrical interpretation.* 'The
science of quantities was cramped
in geometrical fetters, until Dio-
phantus came to break the fetters,
and set it free.

Diophantus used his new algebraic methods to solve
equations of the first and second degrees, i.e. linear and
quadratic equations of the forms

Fig. 17.

ax+b=0 and ax®+bx+c=o0,

and it is of interest that he used just the same methods as are

* Hero had announced that the area of a triangle of sides a, b, ¢, was
Wila+b+c) (—a+b+c) (a~b+c) (a+b—0)],

a form of statement which the early Greeks would have found meaningless,
since it needed a four-dimensional space for its geometrical representation.
But this form of statement was so unusual that Hero apologised for
multiplying four factors, where only three could be represented in a
diagram.
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taught in our schools to-day. He also solved a few simple
simultaneous equations, and the very simple cubic equation
B+x=4x2+4.

ASTRONOMY IN ALEXANDRIA

In the thousand years we now have under review, we find
four really great astronomers associated with Alexandria—
Aristarchus, Eratosthenes, Hipparchus and Ptolemy. The first
is noteworthy as having given the first true description of the
arrangement of the solar system—planets, including the earth,
revolving round a central sun—while the last is noteworthy
as having given a description which was entirely erroneous,
and yet held the field, almost unchallenged, until the sixteenth
century A.D.

ARISTARCHUS OF SAMOS (c¢. 310—230B.C.). We know but
little of the life of Aristarchus. He was sometimes described
as ‘the mathematician’, but Vitruvius speaks of him as
one of the few great men who possessed an equally pro-
found knowledge of all branches of science—geometry,
astronomy, music, etc. He was born in Samos and became a
disciple of Straton who, as one of the earlier Peripatetics, had
probably been in close touch with Aristotle. Straton had tried
to explain everything on rationalistic lines, so that it is not
surprising that Aristarchus should approach the problems of
astronomy from a similar angle.

He was, indeed, the first to treat astronomical observations
in a truly scientific spirit, and to make deductions from them
by strict mathematical methods. In a work which is still
extant, On the Sizes and Distances of the Sun and Moon, he
tries to calculate these sizes and distances by pure deduction
from observation.

We have seen how Anaxagoras (p. 61) had given the true
explanation of the phases of the moon. As the sun and moon
move about in the sky, that fraction of the moon’s surface
which is lighted by the sun changes continually. At the
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moment when precisely half is illuminated, the angle EM.S in
fig. 18 must be exactly a right angle. If, then, Aristarchus
could measure the angle MES at such a moment, he would
know the shape of the triangle MES, and so could calculate
the relative distances of the sun and moon.

Fig. 19.

Such was his ingenious and perfectly sound method. But
the moment of exact half-moon is difficult to estimate, and
Aristarchus estimated the angle MES to be only 87° at this
moment, whereas the true value is 89° 51’. The error was
more serious than appears on the surface, because the final
result of the calculation turns on the small difference between
this angle and go°. Aristarchus estimated this at 20 times its
true value, and concluded that the sun is about 19 times as
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distant as the moon, whereas the true figure is just 20 times
greater. Nevertheless this calculation, inexact though it was,
drew attention to the inequality in the distances of the sun
and moon. It showed also that the sun and moon must be of
very different sizes. They look the same size in the sky, as can
be most easily verified at an eclipse, so that their actual sizes
must be proportional to their distances—the ratio which
Aristarchus had determined.

It remained only to determine the actual sizes of the sun
and moon, and these could be determined from the size of
shadow which the earth casts over the moon at an eclipse; as
the sun is so distant the earth’s shadow must be almost equal
to the earth which casts it. Aristarchus estimated that the
diameter of the shadow was about 7 times that of the moon,
and concluded that the earth must have about 7 times the
diameter of the moon, although the true figure, as we know,
is about 4. But, however inaccurate his estimates were, they
showed that the sun must be many times larger than the earth.

We know nothing of the trend of his thoughts in the face
of this discovery, but we can imagine him pondering on the
inherent improbability of the sun revolving around an earth
which was so much smaller than itself. Philolaus had already
proposed dethroning the earth from its supposed central
position, and making it revolve with the other planets round
a new centre, the ‘central fire’ of the universe, while Hera-
clides had taught that the two planets Mercury and Venus
revolved round a centre which was none other than the sun.
Why not, Aristarchus may have thought, combine the two
suggestions and suppose that all the planets, including the
earth, revolve around the sun?

Aristarchus probably saw that if the earth moved in this
way, its motion would cause the fixed stars continually to
change their directions as seen from the earth, so that the
appearance of the sky ought continually to change. Yet no
such change was noticed, and he may have seen that this
could only mean that the stars are so enormously remote that
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the earth’s motion round the sun makes no appreciable change
in their apparent positions. In any case Archimedes wrote a
few years later that Aristarchus put forward the hypotheses
‘that the fixed stars and the sun remain motionless, that the
earth revolves about the sun in the circumference of a circle,
the sun lying in the middle of the orbit, and that the sphere
of the fixed stars, situated about the same centre as the sun,
is so great’ that the earth’s orbit ‘bears the same proportion
to the sphere of the fixed stars as the centre of a sphere bears
to its surface’.*

By abandoning the usual Greek methods of speculation
and reliance on supposed general principles, Aristarchus had
attained, almost at one bound, to an accurate understanding
of the arrangement of the solar system; he had gained true
ideas as to the relatively minute size of the earth, its apparent
unimportance as a mere appendage of a far vaster sun, and
the insignificance of both in the vastness of space.

In this way astronomy was started on the right road, and
we might expect that the rest of the story would be one of
rapid progress on scientific lines. Actually it was to be very
different. Plutarch tells us that the doctrines of Aristarchus
were confidently held, and even violently defended, by
Seleucus of Babylon in the second century B.c., but apart
from this isolated adherent, we hear of but little support for
them until the time of Copernicus and Galileo.

The truth seems to be that such doctrines were simply too
far in advance of their time to prove acceptable to either the
simple or the learned. The solid, sturdy, unimaginative
‘horse-sense’ of the average citizen told him it was absurd
to imagine that anything so large as the earth could be only
a minute fragment of the universe, and still more absurd to
imagine that anything so big and solid could be in motion—
and if it were, pray, what could produce the immense forces
that, according to the mechanical ideas of the time, would be
needed to keep it in motion?

* Archimedes, Yapuitns (the Sand-reckoner).
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Moreover, we can imagine the average citizen feeling
reluctant to surrender his comfortable feeling of consequence
as an inhabitant of the most important part of the universe,
or as a near neighbour of the gods. And so Cleanthes pro-
posed that Aristarchus should be charged with impiety, as
Anaxagoras had been two centuries earlier, and again religious
intolerance helped to divert thought from the truth. Astro-
nomy was brought back to essentially the point at which it
had been left by Eudoxus, and ideas generally similar to
those of Eudoxus were to mould astronomy for 2000 years to
come.

ERATOSTHENES (c. 276-195 B.C.) was the chief curator of
the library at Alexandria, and he not only had the reputation
of being the most learned man of antiquity but was almost
equally famous for his athletic prowess. He wrote on many
subjects, but is best known for his measurement of the
dimensions of the earth. The principle was extremely simple,
and was not new.

He believed that at noon on midsummer day, the sun was
exactly overhead at Syene (the modern Aswan), so that the
bottom of a well was directly illuminated by the rays of the
sun, and he found by measurement that at the same moment
at Alexandria the sun was a fiftieth of a complete circle (or
7° 12") below the zenith. He believed Aswan to be due south
of Alexandria, and concluded that the earth’s surface at Aswan
made an angle equal to a fiftieth of a complete circle with the
earth’s surface at Alexandria, whence the circumference of
the earth must be 50 times the distance from Syene to
Alexandria. Estimating this latter distance to be 5000 stadia,
Eratosthenes concluded that the circumference of the earth
was 250,000 stadia. Archimedes tells us that it had been
previously estimated at 300,000 stadia.

Eratosthenes seems to have subsequently amended his
estimate to 252,000 stadia. We do not know what the precise
length of the Egyptian stadium was, but if we assume the
likely length of 517 ft., the circumference comes out at about
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24,650 miles, as against a true value of 24,875 miles. But
Eratosthenes seems to have made his measurements only in
very round numbers indeed, so that to some extent the
accuracy of his final result must be attributed to pure good
fortune.*

Eratosthenes is also said to have measured the ‘obliquity
of the ecliptic’, i.c. the tilting of the earth’s axis of rotation
which causes the seasons, and obtained the value of 5ths
of a complete circle, or 23° 51°, whereas the true value at the
time was about 23° 46,

HIPPARCHUS. The next great figure we meet is Hipparchus
of Nicaea (c. 190~120 B.C.). From the time of Aristarchus on,
numbers of astronomers had recorded the positions of the
brighter stars relative to certain standard points in the sky.
Hipparchus built an observatory at Rhodes, and made similar
measurements. His reason was that in about 134 B.C. he had
found that the bright star Spica had changed its position by
about 2° in the preceding 160 years, and this had suggested
the need for a new and more exact list of star positions. He
accordingly drew up a list of about 1000 stars, this being the
number that can be seen with ease in Egypt, and proceeded
to measure their positions with all the accuracy he could
command.

He next compared this star list with records of the time
of Aristarchus, and also with some still earlier Babylonian
records. He may have expected to find that here and there an
individual star had changed its position in the sky; what he
actually found was a systematic series of changes which
indicated that the earth’s axis had changed its direction in
space; it had not always pointed to the same point in the sky.
To repeat the simple analogy we have already used (p. 8),

* Actually Aswan is not exactly on the tropic, as Eratosthenes assumed,
but about 40 miles north of it, and it is not due south of Alexandria, but
about 180 miles to the east; the difference of latitude between the two
places is not 7° 12’ but 6° 53’. The first error of 40 miles would alone
result in an ertor of 2000 miles in the circumference of the globe.
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the earth did not spin like what the boys describe as a
‘sleeping’ top, but was wobbling like a ‘dying’ top. This
phenomenon is known as ‘the precession of the equinoxes’,
and its discovery is usually credited to Hipparchus, although
a claim is also made for the Babylonian Kidenas with whose
work Hipparchus was acquainted. Hipparchus estimated
that the earth’s axis moved through an angle of about 45" a
year, but the true value is about 50-2”, so that the earth-‘top’
requires about 25,800 years to complete a wobble and return
to its original orientation. It is a great time, but not enor-
mously long in comparison with historical time, so that within
human history the earth’s axis must have pointed in directions
substantially different from that of to-day. We have already
seen how this knowledge can be used to date the naming of
the constellations, and, in the same way, if we had not known
the date of Hipparchus, we could have deduced it from the
positions he assigned to the stars.

He also studied the motions of the sun, moon and planets
across the sky, and obtained results of great accuracy, giving
the length of the lunar month accurately to within a second,
and that of the solar year with an error of only 6 minutes.
Indeed, he made good measurements of most of the funda-
mental quantities of astronomy, and in so doing placed
quantitative astronomy on a reasonably exact basis. He tried
to devise an arrangement of planetary orbits which should
account for the observed motions of the planets across the
sky. Most of his writings are lost, but it is likely that his
scheme was very similar to that which Ptolemy subsequently
gave in his Almagest, although perhaps less final in form
(p- 93)-

He is generally credited with the invention of trigonometry,
although his writings on the subject are all lost. He is said to
have constructed what we now call a table of natural sines,*
and is believed to have discovered the theorem (generally

* This in effect gives the length of the chord subtending a given angle
at the centre of a circle.
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known as Ptolemy’s theorem) which we express in the
form . .
sin (4 + B)=sin 4 cos B+ cos 4 sin B,

and virtually contains the whole of elementary trigono-
metry.

Hipparchus is also said to have known how to ‘solve’
spherical triangles, i.e. to calculate all the angles and sides of
a triangle drawn on a sphere, such as the surface of the
earth, when three of the six are given. This would, for
instance, enable the astronomer navigator to calculate the
distance between two points of which the latitude and longi-
tude were known. Incidentally, the plan of specifying the
position of a place on the earth’s surface by its latitude and
longitude originated with Eratosthenes, but the corresponding
plan for the sky with Hipparchus.

Hipparchus died somewhere about 120 B.C., and after him
no astronomer of importance appeared for more than two
centuries. In astronomy, as in other subjects, the Christian
era opened in a period of scientific stagnation.

PTOLEMY. The first astronomer of consequence that we
meet on the other side of the gap is Claudius Ptolemy, who is
not known to have been in any way related to the reigning
house of the same name. He taught and made observations
in Alexandria from about 127 to 151 A.D., and is believed to
have died about 168. His best known work, the Almagest,*
did for astronomy what Euclid’s Elements had done for
geometry, and remained the standard book on the subject
until the seventeenth century. Like the Elements it consists
of thirteen books, and it contains much mathematics as well
as astronomy. Some of it is original, but much is obviously
taken from earlier writers, especially Hipparchus.

Book 1, which is a treatise on trigonometry, is noteworthy

* The original title was ueyddn olvrafis Tfis &otpovoulas, but some
Greek translator appears to have changed uey&An into weylotn which

some Arab may have then changed into ‘al megiste’, and hence the
usual name.
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for a table of natural sines.* The value of = is given as 34%,
or 3-14167, which compares with other values as follows:

375= 3+7 314286
Limits assigned by Archimedes 310=3+ 1 — 314084
71'
Ptolemy’s value Ls=3+- 1 =31416
y 31203 7 117 314107
. . I
A later approximation 3It=3+ i 3'1415929
16
True value 3°1415927.

Two other books contain the places of 1022 stars, while
others deal with the theory of planetary motions. These,
which are the most famous part of Ptolemy’s works, definitely
put the earth back to the centre of the universe. Eudoxus and
Callippus had imagined the planets to be attached to a com-
plicated system of moving spheres; Ptolemy replaced these
spheres by a system of moving circles, the general arrange-
ment of which is shown in fig. 20.

In this scheme the sun and moon move round the earth in
circular orbits, but the motions of the other planets are more
complicated. Out beyond the orbit of the sun is another
circular orbit in which nothing material moves—only a mathe-
matical abstraction known as the ‘fictitious Mars’. While this
is moving round the circle, the real Mars moves in a smaller
circle round the fictitious Mars. The big circle in which the
fictitious Mars moves is called the ‘deferent of Mars’, while
the smaller circle in which the real Mars moves is called the
‘epicycle of Mars’, since it is one circle superposed upon
another. At some stages of this motion, Mars will be moving
in its epicycle in the same direction in which the fictitious
Mars moves in its deferent; the motions in the epicycle and
the deferent will then reinforce one another, and Mars will
appear to move very rapidly across the sky. But at other

* See the footnote to p. 92.
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stages, when the motion in the epicycle is in some other
direction, Mars will appear to move less rapidly; sometimes
the motion in the epicycle will be in exactly the opposite
direction to that in the deferent, and Mars will then appear
to move backwards. All this fits in well with the observed
motion of Mars; it usually moves across the sky in the same
direction as the sun and moon, but at times it appears to
hesitate in this motion, and occasionally it moves for a short
time in the opposite direction.

Venus

Fig. 20.

Still farther from the earth, Ptolemy proposed similar
arrangements of deferents and epicycles for Jupiter and
Saturn. There were also deferents and epicycles for
Mercury and Venus, but these were made different in charac-
ter, so as to fit in with the different quality of motion of these
two planets. For while Mars, Jupiter and Saturn on the
whole drop steadily to the eastward of the sun, Mercury and
Venus oscillate round the sun without ever moving far away
from it. Ptolemy explained this by supposing that the deferent
circles of Mercury and Venus lay between the earth and the
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sun’s orbit, and that the fictitious planets so moved in their
deferents as always to lie exactly between the earth and the
sun; this made the true planets in their epicycles appear to
move round the sun. But it was a highly artificial device, and
it seems strange that Ptolemy did not think of making
deferents of Mercury and Venus coincide with the orbit of
the sun as Heraclides of Pontus had done; even the ancient
Egyptians are said to have believed that these planets revolved
directly round the sun.

As a representation of what really happens, Ptolemy’s
scheme was of course wildly erroneous, yet at the time when
it was propounded, as de Morgan once remarked, it may have
been more useful than the truth. For men were more con-
cerned then with the apparent, than with the real, motions of
the planets, and the scheme provided a description of these
which was nearly accurate and could be understood by those
for whom it was intended. If Ptolemy had anticipated Einstein
and said that the paths of the planets were geodesics in a
four-dimensional space, his statement would have been value-
less because unintelligible. The same might have happened if
he had anticipated Kepler’s statement that the planets move
in ellipses round the sun, and map out equal areas in equal
times. The truth must be expounded to each generation in
terms of concepts with which it is already familiar. Aristar-
chus had failed to carry conviction through being too far in
advance of his time; Ptolemy, probably with a less penetrating
vision than his great predecessor, succeeded because he was
nearer to the level of contemporary thought.

Ptolemy also wrote a five-volume treatise on Optics, most
of which survives in a twelfth-century translation from Arabic
into Latin. In the last of the five volumes he makes a study
of the astronomical effects of the refraction of light. He knew
that when rays of light passed from one substance to another,
as, for instance, from air to water, they are ‘refracted’ or bent
away from a straight course, and he saw that rays of starlight
would be bent as they passed from the rare air high up in
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the atmosphere to the denser air beneath.* This causes a
star to appear more directly overhead than it really is, so that
for instance, the sun, moon and stars remain visible after they
have actually passed below the horizon. Ptolemy describes
the results of experiments he had performed on the refraction
of light by glass and water, and gives tables of refraction,
assuming a law of refraction which is very nearly correct
when the angle of refraction is small.!

Ptolemy described two new astronomical instruments, the
astrolabe and the mural circle, which were of great use not
only at the time but also for many centuries after. He also
discussed geography from an astronomical standpoint, ex-
plaining the principles of map-making, and agreeing with
Hipparchus that observations of latitude and longitude ought
to be the first step. But he was not in a position to carry out
his own precepts, and could only produce a number of
unsatisfactory maps by piecing together odd scraps of in-
formation that he had collected from traders and travellers.

A number of other books on optics, astrology, sound and
other subjects have been attributed to him, but their author-
ship is doubtful, and they contain nothing to give their author
a fame comparable with that which he acquired from the
Almagest.

PHYSICS AND CHEMISTRY
IN ALEXANDRIA

There was but little to record either in physics or chemistry
in Alexandria; the main incident was the rise and fall of the
study of alchemy in the third century. The word alchemy has

* This at least is how we express it in modern language. Actually
Ptolemy followed Euclid in thinking that rays of light are emanations
from the eye, which groped around in space until they fall upon the seen
object, so that he would have said that the rays of light are bent as they
pass out of the dense lower atmosphere into the rarer air above.

t Ptolemy’s law was 6’=pf-1v8% in place of the correct law,
sin §’=p sin 6, to which it approximates closely when the angles con-
cerned are small (p. 200 below).

JGPS 7
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become associated in our minds with all sorts of silliness and
fraud, but strictly speaking it ought merely to denote the early
form of chemistry. In Alexandria, its practice was a monopoly
of the priestly caste, and its secrets were very carefully guarded.
Many of them, however, are recorded in a collection of third-
century papyri in the Library at Leyden. The general aim of
alchemy was the transmutation of base metals into the ‘noble’
metals, gold and silver. The special aim of the alchemy of
third-century Alexandria seems to have been the production
of cheap imitations of articles of gold and silver. For instance,
a mass of alloy would be made by combining plenty of basc
metal with a little gold; it would then be shaped and immersed
in a mordant salt such as is now used for etching. This would
attack the base metal but not the gold, and so would leave a
piece of metal which would not only look like gold, but would
actually be gold—at any rate so long as no one probed below
the surface. There was no real fraud here; the process was
almost the exact counterpart of our own electro-plating.
Alchemy was practised in Alexandria until about the end of
the third century after Christ, when the Emperor Diocletian
made it illegal, and ordered all books on the subject to be
burned. At first it was of the innocent kind alrcady described,
but later there seems to have been some pretence that the base
metals were really transmuted into gold by processes of this
kind.*

THE END OF THE ALEXANDRIAN
SCHOOL

As the fourth century was nearing its end, we come upon the
astronomer-mathematician Theon, who wrote a commentary
on the Almagest and issued a new edition of Euclid’s Elements,
and also his more distinguished daughter Hypatia, the only
known woman scientist of antiquity; she wrote commentaries
on the conics of Apollonius and on the algebra of Diophantus.

* Dampier, 4 History of Science, pp. 55 ff.
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The inspiration of original scientific work had long ago left
Alexandria; any original thoughts that the school now pro-
duced were philosophical speculations of the mystical, dreamy
type,* and its main work was editing, commenting and re-
hearsing the glories of a bygone age.

The opposition of the Christians to all non-Christian
learning was now becoming formidable, but science was too
moribund to attract much of it. The Christians were not con-
cerned with science; their all-absorbing interest was in theo-
logical controversy. Maintaining that the holding of incorrect
theological opinions was a deadly sin, they devised incredible
tortures, which they inflicted on one another with a cruelty
which the pagan Ammianus said could not be matched even
by savage beasts, and the Christian St Gregory said was ‘like
hell’. But while we read® of their cutting off the ears, noses,
tongues and right-hands of those who held different opinions
as to whether the Son was of the same substance as the
Father, or only of similar substance, we read of no one
suffering for his scientific opinions. Nevertheless Christi-
anity, with its motto ‘Do not examine, only believe’, must
have provided a powerful deterrent to the scientific spirit of
free inquiry.

In Alexandria least of all were learning and science likely
to get any consideration from an all-dominating religion. Its
Archbishop Theophilus, ‘the perpetual enemy of peace and
virtue, a bold bad man, whose hands were alternately polluted
with gold and blood’* had a special enthusiasm for the
extirpation of all monuments of pagan culture, and in 390
a large part of the great library was destroyed, it was
believed, by his orders. His nephew St Cyril, who succeeded
him on the archiepiscopal throne, became jealous of the
influence of Hypatia; she, a pagan, was reputed to have so

* Excellent imaginary examples are to be found in Kingsley’s novel
Hypatia.

t Gibbon, Decline and Fall of the Roman Empire, chap. XXxv1I.

* Gibbon, loc. cit. chap. xxviir.

7-2



100 SCIENCE IN ALEXANDRIA

profound a knowledge of all the sciences that Christianity
itself was in danger. Thus when a band of Christians, mostly
monks, murdered her in 415—by tearing the flesh off her
bones with sharp oyster shells—Cyril was suspected of having
instigated the deed.

Some of the Alexandrians now migrated to Athens, where
Plato’s Academy still maintained an enfeebled existence—a
small island of paganism which was gradually being sub-
merged in the rising tide of Christianity. Although it was
largely concerned with magic and superstitions, its professor
of philosophy, Proclus (412-485) was the greatest philo-
sopher of his age. He had adduced arguments against the
biblical account of the Creation, and had been threatened
with death, to which he made his well-known reply: ‘What
they do to my body does not matter; it is my spirit I shall
take with me when I die.”’ Finally, in 529, the Christians
persuaded the Emperor Justinian to forbid the study of all
‘heathen learning’ in Athens, and the school of Athens became
dead in turn.

Others of the Alexandrians migrated to Byzantium (Con-
stantinople), which Constantine had made his capital in 326,
creating what was virtually a new city with the same zeal and
thoroughness as Alexander had shown in Egypt six centuries
earlier, his intention being to make a capital worthy of an
Empire which was henceforth to be entirely Christian. The
result was disastrous. The new city ‘represented one of the
least noble forms that civilisation has yet assumed’...‘Im-
mersed in sensuality and in the most frivolous pleasures, the
people only emerged from their listlessness when some theo-
logical subtlety, or some rivalry in the chariot-races, stimu-
lated them into frantic riots.”*

Learning was not likely to flourish vigorously in such a
soil, but the city became a minor centre of Greek culture in
the east, and remained so until the Turks captured it in 1453.
If, during this 8oo years, Byzantium added but little to the

* Lecky, History of European Morals, 11, 13.
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world’s store of knowledge, it at least acted as a stagnant
reservoir of learning from which driblets occasionally leaked
out to fertilise thought outside; it created little, but it pre-
served much from destruction.

One of the theological conflicts of the Byzantines actually
proved advantageous to learning. Nestorius, Bishop of By-
zantium, maintained that the personality of Christ was a
blend of two distinct natures, a human and a divine, and that
the Virgin Mary was the Mother of the man Christ but not
of the divine Lord Jesus; the title ‘Mother of God’ was
abhorrent to him. When the first Council of Ephesus declared
this to be a heresy in 431, the many followers of Nestorius
found their lives made intolerable by persecution and moved
eastward, first to Mesopotamia and thence, goaded on by
more persecution, to Persia. Here they were free to occupy
themselves with literature and science, writing original works
in Syriac, their own native language, which had now become
the common language of Western Asia, and translating the
works of Aristotle, Plato, Euclid, Archimedes, Hero, Ptolemy
and many others into the same tongue, with results we shall
see below.

The final end of the Alexandrian school came in 642, when
the Mohammedans conquered the city, and destroyed the
remainder of the great library. The Caliph Omar is said to
have justified this final act of vandalism on the ground that
‘if these writings of the Greeks agree with the book of God,
they are useless, and need not be preserved; if they disagree,
they are pernicious, and ought to be destroyed’. Abulphar-
agius records that the volumes kept the four thousand baths
of the city in fuel for six months*—an obvious exaggeration,
for even if there were 400,000 volumes left in the library, the
average fuel ration per bath would be only four volumes a
week.

* Gibbon, loc, cit, chap. xL1,



CHAPTER 1V

SCIENCE IN THE DARK AGES
(642-1453)

WE have now followed the fortunes of science as it came to
Europe from the east, first impinging on Ionian Greece and
then penetrating to Athens, to various outlying parts of the
Greek mainland and to southern Italy. Finally, when its light
was already beginning to fade in Greece, it turned eastward
again and found a home in Alexandria, the magnificent city
which Ptolemy I had built at the mouth of the Nile,

Here many subjects of study had seemed to work themselves
out to their natural endings. Geometry, which had made
such magnificent progress at first, came to a dead end; algebra
had hardly yet arrived; physics, which had made a good start,
had been strangled almost at birth; astronomy, after making
the best of starts, had taken a wrong turning at the time of
Aristarchus, and was now advancing along the wrong road.

Worst of all was the opposition of religion. We have seen
how the Christians had burned a large part of the great
library in 390; in 415 they had murdered Hypatia; and in
642 the Mohammedans conquered the city, closed down the
university and completed the destruction of the library. Each
attack drove a part of the school abroad, so that learning and
learned men were scattered to many lands—to Greece, to
Rome, to Byzantium, even to Persia and the east. We shall
now see how these scattered threads were all drawn together
in the great medieval empire founded by the Arabs.

During unknown centuries Arabia had been inhabited by
nomadic tribes, ranging from visionaries and dreamers to
murderous savages. Their religion had been a primitive poly-
theism of tribal gods and devils, until Christian and Jewish
ideas seeped in from Byzantium, Abyssinia and Persia.
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Here in about 470 a posthumousinfant Mohammed was born
and brought up by a rich grandfather. He made himself a
child of the desert, finally became a caravan conductor, and
married an old but wealthy widow, Khadija. To her, and to
his nearest relatives and friends, he confided that he had
received in a vision a revelation that there was only one God,
and that he, Mohammed, was his prophet. When he declared
this to a wider circle, he met with ridicule and persecution,
and finally he fled in 622 to Medina, where he met with more
sympathy, and founded a brotherhood out of which grew the
religion that was to make converts by the hundred million,
and from here he preached a holy war.

The Arabs, possibly spurred on by a vision of a world-wide
Mohammedan religion, now started on a career of military
conquest. Palestine and Iraq fell to them within a few years;
they invaded Syria in 636 and Egypt in 639; they were in
possession of Alexandria in 642. Persiaand western T'urkestan
followed, together with parts of western India, of northern
Africa, of Spain and of western Europe. At breathless speed
they were building one of the greatest empires the world has
ever seen, butalso one of the most unstable, for within four cent-
uries its glories had departed, and it was crumbling into dust.

Their new mode of life gave them visions of a wider culture
than that of the burning desert, and as they passed on their
triumphal way, they absorbed learning as well as territory.
Their conquest of Egypt gave them whatever of learning was
left in the empty shell of Alexandria; by their conquest of
Persia they acquired some of the learning which had been
carried from Alexandria to Byzantium, and thence farther
east by the Nestorians. Indeed there was a brief period in
which the Nestorian centre of Gondisapur served as a sort of
cultural capital for the mushroom empire of the Arabs, but
changes soon came; Gondisapur had to yield to Baghdad, and
Arabic replaced Syriac as the language of culture and science.
The industrious Nestorians now set to work to retranslate
the Greek classics into Arabic.
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This accession of learning by conquest was supplemented
by an influx from outside. Some came from Greece, carried
largely by Greek physicians who were called in to treat the
Arabian conquerors for a variety of diseases which had been
unknown to them in their desert life. Some came from India,
consisting mainly of arithmetical knowledge brought in by
traders. So far the civilisation of the Hindus had contributed
but little to science, possibly because the all-enveloping
religious atmosphere had not been conducive to a study of
material things. Life was but a passing shadow-show of
which man had, for his sins, to witness many performances,
and from which he must for ever try to escape through the
subjugation of his personality. The material world seemed as
unimportant as it had been to the early Christians, and science
languished—not from persecution or intolerance, for the
eastern religions ranked tolerance as a virtue—but in an
atmosphere of complete unconcern. Then, as the fifth century
approached its end, a tribe of Aryans invaded the country,
and science began to flourish as never before or after, until
the present great scientific awakening in India.

One of the more prominent Indian scientists of this early
period, Arya-Batha who was born in Patna in 476, is thought
to have invented algebra independently of Diophantus. He
showed how to solve quadratic equations, and published a
table of sines,” but we do not know whether this was his own
creation or the result of having studied books by earlier
writers. He also gave correct values for the sum of a series of
consecutive integers (1+2+3+ ...), as well as for the sum
of their squares and cubes. A later mathematician, Brahma-
gupta (c. 598-660), also solved quadratic equations and
summed arithmetical progressions, but again we cannot say
how far his work was original. The India of this period may
not have produced much new knowledge, but it gave one
great gift to the world, namely, a ‘positional’ notation for
numbers, in which the value of a symbol was dependent on

* See footnote to p. 92.



SCIENCE IN THE DARK AGES 10§

its position—in brief our own system in which a symbol may
denote units, tens, hundreds, etc., according to where it
stands. Such a system was not new, for it had been used by
the early Babylonians (p. 7), but it entered the western
world through India and Arabia, so that we still describe our
numerals as Arabic. In a later period, the Indian mathe-
matician Bhaskara (born in 1114) wrote an astronomy which
contains the first known explanation of our present-day
methods of arithmetical addition, subtraction, multiplication
and division.”

SCIENCE IN ISLAM

Through this combination of acquisition and influx of know-
ledge, the Arabians became the curators of the scientific
knowledge of the world. They excelled as translators, com-
mentators and writers of treatises, and their aim was not so
much to increase knowledge as to sweep all existing knowledge
into their empire. In or about the year 8oo the famous Caliph
Haroun-al-Raschid had the works of Aristotle and of the
physicians Hippocrates and Galen translated into Arabic,
while his immediate successor, al-Mamun, sent missions to
Byzantium and India to find what other scientific works were
suitable for translation. Conditions being as they were, the
Mohammedans did no small service to science in providing a
storehouse for knowledge, as the Byzantines had done before
them, and assuring that knowledge which had once been
gained should not be irretrievably lost.

Chemistry. In chemistry and optics, however, there is real
progress to report. In chemistry two names have survived
the obliterating influence of time—Jabir-ibn-Hayyam and

* The treatise was in verse and partly in the form of a dialogue with his
daughter whom he never allowed out of his presence in order to prevent
her marrying, e.g. ‘ Lovely and dear Lilavati, whose eyes are like a fawn’s
tell me what are the numbers resulting from 135 multiplied by 12. If

thou be skilled in multiplication. . .tell me, auspicious damsel.. ..’ (See
W. W. R. Ball, A Short Account of the History of Mathematics, p. 147.)
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Geber. The former, who seems to have flourished in the latter
half of the eighth century, explained how to prepare arsenic
and antimony, how to refine metals, and how to dye cloth and
leather, besides making other advances in utilitarian chemistry.
He was less happy on the abstract side, introducing the falla-
cious idea, which was to loom large in the later story of
chemistry, that matter which was burned lost something of
its substance in the burning. He also added two new
* ‘elements’ to the four of the Pythagoreans and Empedocles,
calling these mercury and sulphur, although he did not mean
the same by these words as we mean to-day (p. 152). To these
his successors added a third new element, salt.

Geber was perhaps a century later, although there is much
uncertainty as to his date, some even thinking that he was the
same person as Jabir.* Whoever he was, Singer* has described
him as ‘The father of Arabic alchemy and, through it, of
modern chemistry’. Arabic alchemy, like the earlier alchemy
of Alexandria, differed from modern chemistry in its aims
rather than in its methods, confining itself to the single aim
of transmuting substances into gold or silver. Thus we find
Geber studying and improving the then standard methods of
evaporation, filtration, sublimation, melting, distillation and
crystallisation, as well as preparing many new chemical sub-
stances, such as the oxide and sulphide of mercury. He also
knew how to prepare sulphuric and nitric acids, and the
mixture ‘aqua regia’ in which even gold may be dissolved.

Optics. Interest was also taken in optics, and there was a
growing appreciation of the possibilities of optical instru-
ments. Legend said that the Pharos (lighthouse) at Alexan-
dria had been equipped with some instrument through which
ships could be seen at sea which were otherwise invisible; if
so, no further progress seems to have been made until
Arabic times. In the ninth century we find al-Kindi of Basra
and Baghdad (813-80) writing on optics, and especially on

* Dampier, History of Science (3rd ed., p. 79).
t Short History of Science, p. 132.
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the refraction of light. A century and a half later Ibn-al-
Haithan or al-Hazen (965-1038) was working in Cairo on the
subject of refraction. He found that Ptolemy’s law was (p. 97)
true only for small angles, but did not discover the true law.
He also studied the action of spherical and paraboloidal
mirrors and the magnification produced by lenses, and solved
the problem—still known as al-Hazen’s problem—of finding
the relation between the positions of a source of light and its
image formed by a lens. He gave a correct explanation of the
act of vision, saying that we see by something from the seen
object passing into the eye—in opposition to the teaching of
Euclid and Ptolemy that we see by something passing out of
the eye and groping for the object. With al-Hazen optics was
beginning to assume its modern form.

Other subjects were not entirely neglected, but there was
no sensational progress. For instance, al-Kirismi, who was
Librarian to the Caliph al-Mamun, wrote a treatise on
algebra® which did much to introduce our present numerical
notation into western Europe. In astronomy al-Battani, who
died in 929, redetermined the constant of precession (p. 92),
and calculated some new astronomical tables. At a later date
Ibn-Yunas (about 1000), who was perhaps the greatest of all
the Arabic astronomers, made valuable observations on solar
and lunar eclipses and achieved substantial progress in
trigonometry.

But the age was less remarkable for its scientific advances
than for its succession of men of encyclopaedic knowledge,
each writing on a vast variety of subjects. al-Kindi, ‘the first
philosopher of the Arabs’, whom we have already mentioned,

* Al-gebr we'l mukabala. The first word of the title, from which our
word algebra 1s derived, means restoration, and refers to the transfer of a
quantity from one side of an equation to the other by the process of
adding the same quantity to both sides of the equation or subtracting the
same quantity from both sides.

Algebra is one of the few exceptions to the general rule that the sciences
take their names from the Greek language—arithmetic, geometry, trigo-
nometry, physics, astronomy, and so on.
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issued 265 publications on the most varied subjects, while the
Persian Rhazes (865-925), who was primarily a physician and
an exceedingly good one, not only wrote on measles and small-
pox, but also on alchemy, theology, philosophy, mathematics
and astronomy. There was also al-Biruni (973-1048), who
was mathematician and astronomer, physicist and geographer,
physician and historian. It was in the last of these capacities
that he achieved the greatest fame, but he also determined
the specific gravities of a number of metals and precious
stones by the method of Archimedes.

Mohammedan science flourished in a subdued way until
about the end of the tenth century, and then conditions began
to change. The golden age of Islam had already passed away,
and now the great Empire was itself breaking up, its ruling
classes dying out and its more distant provinces seceding.
Culture was on the downgrade and science with it. In the
east, at least, it had definitely outstayed its welcome, and was
coming under attack as being antagonistic to religion and
causing ‘a loss of belief in the origin of the world and its
Creator’. The Mohammedans of the east were soon as un-
sympathetic to science as the Christians had been before them.

As Mohammedan science wilted in the east, it acquired a
new vitality in the west, beginning in Spain, and more
especially in Cordoba and Toledo. In Cordoba an academy
and library were established in 970 under the special en-
couragement of its Caliphs, Abd-ar-Rahman III and al-
Hakam II. Gradually an interest in Arabic ideas and an
appreciation of Arabic learning spread over western Europe.
We find Gerbert, who was afterwards Pope Sylvester IT and
died in 1003, introducing an Arabian form of the old Roman
abacus, while another ecclesiastic, Herman the Cripple (1013~
54), of the monastery of Reichenau in Switzerland, wrote
books on mathematics and astrology which showed a strong
Arabic influence. An Englishman, Adelard of Bath (about
1090-1150), who had disguised himself as a Mohammedan
student and attended lectures at Cordoba, wrote a compen-
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dium of Arabic science under the title Natural Questions,
while Arabic alchemy was introduced to the western world
in 1144 by another Englishman, Robert of Chester (about
1110-60), who lived in Spain for many years and finally
settled in London in 1147. Somewhat later, another English-
man, the Yorkshireman John de Holywood (Latinised as
Sacrobosco), wrote an Astronomy which contained little be-
yond translations from Arabic writers, but remained the
standard text-book on the subject for some time.

At the same time, a whole flood of classical books was being
translated from the Arabic into Latin, so that the works of
Aristotle, Euclid, Archimedes, Apollonius and others became
available to the cultivated world in a language they could
understand. Adelard of Bath had secured a copy of Euclid’s
Elements in Arabic during his sojourn in Cordoba, and made
a translation which formed the basis of all European editions
of Euclid until the original Greek text was recovered in
1533. Shortly after this, the Spaniard Domenico Gonzales
of Toledo translated the physics and other works of Aristotle
into Latin, while John of Seville did the same for the astro-
nomical and astrological writings of al-Battani, al-Kirismi,
al-Farabi, al-Kindi and others. But surely the most indus-
trious translator must have been Gerard of Cremona (1114-
87), who learned Arabic through a sojourn in Toledo, and is
said then to have translated ninety-two complete works from
Arabic into Latin, including Ptolemy’s Almagest, Euclid’s
Elements, and works by Apollonius, Archimedes, al-Battani,
al-Farabi, Geber and al-Hazen.

Besides these endless translations, the Spain of this period
produced a small amount of original thought, especially in
astronomy. The astronomer Arzachel, a Cordoban who lived
in Toledo in about 1080, anticipated Kepler (p. 164) by
suggesting that the planets moved round the sun in ellipses,
but found that no one was willing to consider a hypothesis
that was so opposed to the doctrines of the Almagest. About
a century later al-Bitrugi of Seville (Alpetragius in Latin)
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proposed replacing the complicated Ptolemaic system of
cycles and epicycles by a system of concentric circles. When
his book was translated into Latin by Michael the Scot
(about 1175-1235), it carried the first challenge to the
Ptolemaic astronomy into western Europe.

One of the last gifts which Mahommedan science trans-
mitted to the western world was the ‘Arabic’ system of
numbers, which the Arabs had themselves acquired from
India (p. 105). Adelard of Bath had first introduced it when
he translated al-Kirismi’s Arithmetic into Latin early in the
twelfth century, but a more conscious effort was made by the
much-travelled Italian mathematician I.eonardo of Pisa, when
he asserted in his best-known book* that the system was but
little known in Europe, and recommended it as being more
convenient than the commonly used Roman system. Shortly
after this, John de Holywood used the system in a much
read text-book on arithmetic, which, like his astronomy,
remained the standard text-book on the subject for a long
time. A few years later, in 1252, King Alphonso (the ‘Wise’)
of Castille had some Toledo Jews compute new astronomical
tables from Arabic observations and publish them in the
Arabic notation. Through these and other similar activities,
the Arabic notation gradually became understood, and was
in fairly common use by the end of the thirteenth century.
At this same period we come to the end of the era of transla-
tions and text-books, in which so many had tried to recapture
the knowledge of former ages, and so few to extend it. Science
had now come back to the west, and was free to advance by
western methods.

If we try to sum up the advantages which had accrued to
science from its stay in Islam, we think first of its new
notation for numbers, and its new methods of manipulating
numbers. For the rest, a knowledge of algebra had been
gained which was almost identical with our present knowledge
of elementary algebra. Geometry still stood where it had at

* Algebra et Almuchabala, oxr Liber Abaci (1202).
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the end of the Greek supremacy, but there was little need for
it to advance now, since algebra and trigonometry could do
all that was wanted. Physics had freed itself from the specu-
lative atmosphere which had enveloped it in Greek times, and
had become experimental instead of contemplative—an enor-
mous step in the right direction. To determine the specific
gravities of precious stones by a thousand-year-old method
would seem a dull piece of research to a modern physicist,
but it lies on the high road to his present point of vantage,
whereas the Greck orgy of speculation could lead nowhere.
Science had also gained a new appreciation of the value of
optical instruments, although we do not yet hear of any
attempt to usc them for astronomical purposes. Chemistry,
too, had made a start along the right road, but was not yet
entirely disentangled from a fraudulent alchemy.

WESTERN SCIENCE

It must not be supposed that while science had been making
these gains in Islam, it had been completely stagnant else-
where. It had not, but it had enjoyed only spasmodic vitality,
flourishing at the best only in isolated and transitory patches.
The story of such a spasmodic period of activity usually began
with a stirring from the top, frequently by a very highly
placed personage, which failed to evoke any real interest in
the masses of the population, few of whom had the education
necessary for an interest in science. Any interest there was
in genuine science was usually transferred in the end to the
spurious sciences of alchemy, astrology and magic; these
could claim to be advantageous to their devotees, while real
science, offering only knowledge for its own sake, could make
no such claims.

A conspicuous instance occurred in 787, when Charles the
Great resolved to encourage learning in his empire, and
decreed that every abbey must establish a school. He charged
two monks, Peter of Pisa and Alcuin of York, who were
attached to his court, with the carrying out of the order, and
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through their efforts some learning was brought back from
east to west, but many centuries were to elapse before there
was any widespread interest in science. Similarly, in the
tenth century two of the Byzantine Emperors, Leo VI and
Constantine VII, showed an enthusiasm for astronomy, but
little of this spread even to the educated layers of the popu-
lation.

We can hardly leave the question of royal interest in
medieval science without pausing for a moment to glance at
the fantastic and arresting figure of Frederick 1I, Emperor
of the Holy Roman Empire (1194-1250), whom his friends
called ‘Stupor mundi’—the world’s wonder. He was so
talented and versatile, whether as scholar and poet, or as
soldier and statesman, or even as a mere linguist, that the
world could in no case have overlooked him. But he was
careful not to let it, and was assiduous in drawing the maxi-
mum of attention to himself, keeping up a great harem and
travelling with an assortment of elephants, dromedaries and
other arresting animals which could hardly fail to be seen
even in the colourful thirteenth century.* He was said to
have denounced Christ, Moses and Mohammed as a trio of
imposters, and engaged in a series of quarrels with the Pope,
who excommunicated him twice—first when he failed to start
on a crusade which he had vowed to undertake, and secondly
when he decided to go after all. Yet his hectic and vivid
personality found time and energy for a genuine interest in
the things of the intellect—philosophy and mathematics,
astrology and medicine in particular—and he showed his
interest by active help. It was the age when the great medieval
universities were coming into existence," and Frederick was
personally responsible for the foundation of Naples and
Padua. He further had a number of Arabic works translated
by a band of Jews. It is not clear whether his primary aim

* H. A. L. Fisher, 4 History of Europe, p. 272.
t The dates of recognition by the state were: Paris, 1200; Oxford, 1214;
Naples, 1224; Cambridge, 1231; Padua, 1238.
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was to help science or to annoy the Pope—he succeeded in
doing both—but the results were good, and copies of the
works of Euclid, Archimedes, Apollonius, Ptolemy and others
were made available by his action.

On one occasion he broke a journey at Pisa to test for him-
self the far-famed mathematical powers of Leonardo of Pisa,
and arranged a mathematical tournament at which a ‘problem
paper’ was set to all comers. This has been preserved, and
the problems are of interest as showing the high mathematical
level of the period. One problem (stated in modern language)
was to find a number x such that ¥2+ 5, ¥2 and x¥2— 5 are all
squares. Leonardo gave the correct solution, x=%1.* Another
problem was to solve the equation x“+2x2+ on 20 by
geometrical methods. Leonardo showed that this is impos-
sible, but gave the algebraic solution x = 1-3688081075, which
is accurate to nine places of decimals.! Leonardo came out
quite triumphantly, solving many of the problems correctly,
while no one else solved any at all.

ScIENCE IN THE MoNAsTIiC ORDERS

Not only were the medieval universities founded at this time,
but also two monastic orders—the Franciscans or Gray Friars
in 1209, and the Dominicans or Black Friars in 1215-—both of
which had their influence on the progress of science. At first
the events were of purely religious significance. St Francis,
the son of a rich merchant of Assisi, experiencing a sudden

* The mathematician will see that this is far from mere child’s play. If

x is the solution, then x%+ 5 and x* — 5 must be of the forms x? + 5 = (x +y)?,
x?—5=(x—2)2 Eliminating x from these two equations, we obtain

and each fraction is equal to -1---;———2» . Presumably «x, ¥ and 2 must

all be commensurable, which condition is satisfied if 5%~ (yz)? and yz are
both perfect squares. An obvious solution is yz=4, which leads at once
to Leonardo’s value for x.

t Leonardo still used the sexagesimal scale of the early Babylonians,
and so expressed his solution in the form x =1 22" 7" 42" 33" 47 40"\,

JGPS 8
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conversion, abandoned a gay, careless and wild life to devote
himself to the relief of suffering and the preaching of repent-
ance. This he did with enthusiasm; we read of his jumping
down from his horse to kiss a leper that he met on the road,
and preaching the glad tidings of the gospel to the birds and
fishes. He founded an order of friars who were at first
intended to follow in his footsteps, preaching to simple people
in simple language. But they soon found that the land was
infested with heresies of all kinds, and they devoted them-
selves to the acquiring of learning, so as to be able to refute
them.

The Dominicans were cast in a different mould. Their
founder, St Dominic (1170-1221) was a professional theolo-
gian who had already attained to cathedral dignity when he
founded his order. Stern and austere in his personal life, he
burned with zeal for the extirpation of every kind of heresy,
but most particularly for that of the Albigensians, who main-
tained that there were two Gods, one good and one bad, the
fathers respectively of Jesus and Satan. After himself preach-
ing against this heresy for ten years, St Dominic founded his
order of Preaching Friars who, living in extreme poverty and
asceticism, were to spread true doctrines throughout the
world. They, too, found that their missionising called for a
fund of knowledge. They made a special effort to gain a
footing in the universities, and held chairs in most of them,
while their special ardour for orthodoxy resulted in a
fanaticism and intolerance which found its obvious outlet in
the Inquisition, so that the Chief Inquisitor in most countries
was a Dominican.

The members of these two orders provided a good propor-
tion of the scientists and teachers of the next two centuries,
the scientists coming mainly from the Franciscans, while the
Dominicans produced others who figured prominently in the
history of thought.

ST THOMAS AQUINAS. Foremost among the latter was of
course St Thomas Aquinas, the greatest of all medieval
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theologians. In his Summa contra Gentiles (1259-64) he
argues that knowledge can be obtained through the two
distinct channels of faith and natural reason. Faith derives
its knowledge from Holy Scripture, natural reason from
sense-data which it inter prets and transforms by a process of
ratiocination, of which the works of Plato and Aristotle
provide the supreme example. Since both kinds of knowledge
come from God, who cannot contradict Himself, they must
be in agreement. It follows that the writings of Plato and
Aristotle must be agreeable with the doctrines of the Christian
religion, and in his Summa Theologica St Thomas considered
he had established that this is actually so. Building on this
basis, he developed the philosophical system now known as
‘scholasticism’. It takes its name from the system of schools
which Charles the Great had instituted in the eighth century
(p- 111), but it amounted to little until St Thomas developed
itinto a consistent body of doctrine in the thirteenth century.
This century saw its rapid rise, but the two succeeding cen-
turies saw its equally rapid decline and fall. By giving itself
over to logic-chopping, to abstract subtleties and trivialities
which were of no interest to live men, it soon lost its hold
over thinking humanity, and by the sixteenth century it was
dead, blown out of existence by the fresh breezes of the
renaissance. As it rose and fell, so also did faith in the
infallibility of Aristotle.

The more gentle and more human Franciscans were less
concerned with the accuracy of their opinions, and more
with the accuracy of their knowledge, which they tried to
check by a direct comparison with the works of God.
Prominent among the scientists of their order were many
who held high positions in the Church. Robert Grosseteste
(c. 11775-1253), Chancellor of Oxford University and Bishop
of Lincoln, and John of Peckham (c. 1220-92), were two
such. Both wrote on optical problems of the kind discussed
by al-Hazen, while Grosseteste himself performed experiments
with mirrors.

8-2
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ROGER BACON (c¢. 1214—94). But the most important of
the Franciscan scientists was a simple friar who attained to
no high office, either in the Church or outside it. He was born
near Ilchester in Somerset, and studied first at Oxford and
then in Paris. Little is known for certain about his subsequent
life, but he seems to have returned to Oxford somewhere
about 1250, and lectured there with great success. Neverthe-
less his wealth, which had been substantial, soon melted
away, and he took the vows of the Franciscan order, only to
find that a purely religious life contained no satisfaction for
him, while an attempted return to scientific activity incurred
the displeasure of his monastic superiors. For ten years he
was kept under restraint and forbidden to write. Then in
1266, to his unspeakable joy, his old acquaintance Guy de
Foulques, now Pope Clement IV, invited him to resume his
scientific work, and is thought to have pleaded his case
personally with the Franciscan authorities. Permission was
finally given, and within two years Bacon had dispatched to
the Pope his Opus Majus, which was a sort of general com-
pendium of the scientific ideas and knowledge of the period.
But Clement died in 1268 and Bacon was soon in renewed
trouble with his Franciscan superiors; in 1278 he was tried
at Paris, condemned for unorthodox opinions, and spent most
of his remaining life in imprisonment.

Rumour said that Bacon was not only interested in true
science but also in the black arts; indeed, it is in the
character of a lurid necromancer that he was known to the
world at large. In science his main interest was in optics. He
understood the laws of reflection and refraction of light, and
explained how lenses could be arranged to act as spectacles
(the invention of which is frequently attributed to him) and
telescopes, although there is no record of his ever having
made either himself. But this was by no means his only
interest, and we find his mind ranging over most of science
in an imaginative and fanciful, although often not very
practical, way. He described how mechanically propelled
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carriages, ships and flying machines might be constructed—
the imaginary forerunners of our motor-cars, steamers and
aeroplanes—and discussed possible uses of gunpowder and
burning-glasses, the circumnavigation of the globe, and other
things which seemed strange in his time, but have become
commonplaces to-day. He argued against the ‘naturalness’
of circular motion, condemned the Ptolemaic system of
astronomy as unscientific, and thought it was probably
untrue.

But his general principles were more important than his
detailed achievements, which were after all meagre enough.
In his Opus Majus he argued that mathematics should be at
the foundation of all liberal education, since it alone ‘can
purge the intellect and fit the student for the acquirement of
all knowledge’. He also insisted that scientific knowledge
could only be acquired by experiment; this alone gave
certainty, while all else was conjecture.

This seems obvious enough to-day, but it was not so when
Bacon wrote. There was still but little idea of taking nature’s
verdict, as revealed by experiment, as the final arbiter of truth.
Men were skilled neither at asking questions of nature nor at
interpreting her answers. They might indeed ask whether an
alleged fact was in agreement with experiment, but they
would first ask (and it was an easier question to answer)
whether it was in agreement with Aristotle or conformable
with Holy Scripture. And those who held that Aristotle
and Scripture, as representing reason and revelation, must
necessarily agree with one another and with the truth,
did not usually go so far as to inquire as to the findings of
experiment.

Bacon objected to this last frame of mind, but went no
further; he was no revolutionary, but a child of his age, and
was as firmly convinced as his contemporaries that in the end
science must be found to agree with the Christian religion,
and so establish its truth. He came at the end of an epoch,
but it was his death—not his birth or life—that marked this
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end. A new era was dawning in which men would no longer
try to discover the truth by reading the opinions of ancient
writers, but from a first-hand examination of the works of
God.
SIGNS OF THE COMING DAWN

It is not altogether easy to see why this last change occurred;
it is certainly much too superficial to explain it by the single
word ‘renaissance’. The classical renaissance in literature had
hardly yet acquired any strength, and what influence it had
was in the direction of turning men’s thoughts back to the
ideas of the ancients. In science the movement was in the
contrary direction. Science was profiting vastly by its access
to Greek scientific writings, but the trend of thought was
away from Greek scientific methods. Perhaps the explanation
is that scientific knowledge, unlike literary imagination, is
cumulative, and that medieval science had already reached a
stage in which it had more to offer than Greek science, the
reverse of what was happening in the field of literature.

The first science to benefit from the new independence of
thought was astronomy. The first name to attract our attention
is Oresme, Bishop of Lisieux (1332-82), a man of great and
varied abilities, who had been confidential adviser to Charles V
of France, and then tutor to Charles VI. He was not only a
prominent ecclesiastic and theologian, but was also distin-
guished in mathematics and economics. He wrote a treatise
on currency which is noteworthy for its use of vulgar fractions
like those we use to-day—%, %, etc. But his main interest to
us is that he challenged the Aristotelian doctrine of the fixity
of the earth.

Nearly a century later his challenge was repeated by Nicolas
of Cusa, a fisherman’s son who had risen without influence to
be a Cardinal of the Church. Entirely rejecting the traditional
astronomy, he expressed the opinion that the earth ‘moves as
do the other stars’.

The last five names we have had occasion to mention have
all been those of ecclesiastics of one sort or another—education
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was almost the exclusive prerogative of the Church. One of
the five, Roger Bacon, was in almost continuous trouble for
his scientific activities (but never, so far as we know, for his
scientific opinions), while the other four, who all held high
positions in the Church, seem to have been allowed not only
to study science, but also to express opinions which were
opposed to the traditional teachings of the Church. It was a
flat denial of the scriptural account of creation to teach that
the world was spherical, yet this was commonly taught, and
the new view of the earth as a moving star seems to have been
regarded in the same way. Broadly speaking, the Church of
the moment was tolerant to the further progress of science,
soothed perhaps by the common belief that science was bound
ir. -he long run to support and confirm orthodoxy; the Church
could, so to speak, afford to be tolerant, at least for a time.

Many other factors combined with this to presage a bright
future for science. Not only was the human mind regaining
its long-lost freedom of thought, but it now had at its disposal
the almost endless writings of the greatest age of ancient
thought, as well as of later ages. One thing more was needed
and, just when it was most needed, it came.

The earliest scientific knowledge had been spread by word
of mouth. Afterwards came the age of the great libraries,
such as those of Alexandria and Byzantium. Inside these
many thousands of books could be read by those who had the
means and leisure to travel to them. Outside them, books
were rare and costly articles, since the production of a single
copy involved a colossal task of writing or transcription on
costly parchment—perhaps ten times as much labour as is
expended to-day in setting the type for an edition of thousands
of copies.

#The Chinese had invented a kind of paper early in the
Christian era, which they had used for printing from blocks in
the ninth century, and for printing from movable type in the
eleventh. In the fourteenth century this latter art was dis-
covered independently in Europe, and from this time on
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printed books became available in ever-increasing quantities,
until now every man is able to have a library of his own in a
few feet of shelving by his fireside.

In time, but not at once, the coming of printing made
scientific knowledge more accessible, and so more widespread.
Religious and literary works were thought to have the first
claim on the newly established presses—first the Bible (1454)
and then Greek and classical writers. No scientific work was
printed until Pliny’s Natural History appeared in Venice in
1469. This was followed in 1471 by the works of Varro, a
Roman country gentleman (116—27 B.C.), who had written an
encyclopaedia of the sciences. So far the choice of scientific
authors had not been particularly happy, but now there was
an improvement. A Latin translation of Ptolemy’s Geographia
appeared in 1475, and three biological works of Aristotle,
also in Latin, in 1476. Euclid was published in Latin in 1482,
and an adequate edition of Aristotle in Greek in 1495. But
Ptolemy’s Alnagest was not printed until 1528, and Archi-
medes’ Psammites only in 1544, both of these being issued at
Basle.

Everything was now favourable to a period of scientific
activity, and it came—little rivulets in the sixteenth century,
and an overwhelming torrent in the seventeenth.



CHAPTER V

THE BIRTH OF MODERN SCIENCE
(1452—-1600)

THERE have been many attempts to assign a precise date to
the beginnings of the literary renaissance—as, for instance,
1453, the year in which Byzantium was captured by the Turks,
and the treasures of its library scattered throughout Europe.
But it is a futile task; the renaissance did not come overnight;
but was a slow development of centuries.

It is the same with the renaissance of the scientific spirit,
with which we shall be concerned in the present chapter.
This revived only gradually after its thousand-year torpor.
But if we had to select a single year, a good deal could be said
for 1452, the year preceding that just mentioned. For in this
year was born Leonardo da Vinci, whom many hail as having
been the first scientist to disentangle his thought from all
the confused and erroneous ideas of the Middle Ages, and to
approach the study of nature in a truly modern spirit. With
Leonardo, science adopts modern aims and modern methods.
Thus it is not inappropriate to begin the present chapter with
a brief mention of this truly extraordinary man.

LEONARDO DA VINCI (1452-1519). His birthplace lies
near Empoli on the road from Florence to Pisa. The natural
son of a Florentine lawyer, and of a common peasant girl
who afterwards married a cowman, his fine appearance and
engaging manner marked him out as one obviously suited to
court life, and actually he was associated with the courts of
Florence, Milan and Rome in turn. But his bodily gifts, out-
standing though they might be, were not to be compared
with those of his mind. Students of his work have long
credited him with almost superhuman intellectual powers;
his note-books, recently recovered and deciphered, confirm
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these estimates and even add to his reputation as one of the
outstanding intellects of the human race.

He was primarily an artist, devoting his main encrgies to
painting and sculpture, but he achieved distinction in a
number of other fields as well—in architecture and engineer-
ing, in philosophy and science—and the note-books suggest
that he could have done the same in yet others had he cared
to do so. He had planned to write text-books on all the various
subjects of his study, and if only these had materialised,
science might have been saved from taking many wrong
turnings.

Unhappily his defects were almost as outstanding as his
talents. Outside his chosen field of art he seems to have
worked clumsily, laboriously and slowly, so that his output
of finished scientific work was minute in amount—indeed, he
seldom finished anything. His best-known positive achieve-
ment is probably his explanation of the dim illumination
which appears on the dark part of the moon at times of new
moon—"‘the old moon in the young moon’s arms’. Leonardo
rightly attributed this to ‘earthshine’—sunlight reflected from
the earth. He also accomplished some experimental work of
a very practical kind in optics, mechanics and hydraulics. In
the more utilitarian sciences he made plans and designed
models for flying machines, helicopters and parachutes, as
well as for quick-firing and breech-loading guns. His 750
anatomical drawings put him in the front rank of the anato-
mists of the world.

But it was his unproved speculations and his unverified
opinions that showed his scientific talent most markedly. In
physiology he anticipated Harvey’s discovery of the circula-
tion of the blood, conjecturing that the flow of blood in the
human body is like the cyclic flow of rain water which falls
on the hills as rain, flows thence to the rivers and seas, is
carried back to the clouds, and then completes the circuit
by coming down again in the form of rain. He said that
blood brings new matter to the various parts of the body and
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carries off the waste products, much as we stoke a furnace and
carry the ashes away. In astronomy he thought that the earth
was ‘a star like other stars’ (meaning a planet like other
planets), and he hinted at a heliocentric world, although others
had of course done this before him. In mechanics he said
that ‘every body has weight in the direction in which it is
moving’, and asserted that a falling body increases its speed
as the fall progresses. Thus he seems to have understood that
force primarily produces acceleration rather than mere move-
ment, challenging the Aristotelian doctrine that force is
necessary for movement, and anticipating the characteristic
feature of Galileo’s mechanics (p. 145). He suggested that
the whole universe conforms to unalterable mechanical laws,
which was of course only a repetition of earlier speculations
of Democritus and Anaximander, but it also anticipated
Newton, although without demonstration or proof. In optics
he regarded light as an undulatory phenomenon, thus re-
peating many earlier suggestions, but also anticipating the
undulatory theory of light.

All this was guesswork, but it was the guesswork of a mind
thinking freely and unshackled by authority, and it must be
conceded that it shows a certain quality of genius. Good
luck may enable any fool to make a sound guess or a true
prediction here and there, but when hit after hit is scored in
almost unbroken succession, something more than luck must
be at work. To form some idea of the value of Leonardo’s
conjectures, let us pause to think what the gain would have
been if his opinions could have replaced those of Aristotle as
the touchstone against which every theory had to be tested
before it could command the attention of the learned
world.

Perhaps Leonardo’s greatest service to science was his
exposition of the principles which ought to govern scientific
research. Before his time men had often enough tried to
advance knowledge by observation and experiment, but their
ideas had too often been cramped by preconceived ideas or
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general principles such as to the naturalness of circular motion
or suitability to some imagined purpose. Leonardo was very
cautious about invoking general principles. It is true that he
worked out the mechanics of the lever from the principle that
perpetual motion is an impossibility, but this principle does
not embody a preconceived notion of how things ought to be,
but thousands of years of experience as to how they actually
are, experience which is none the less real for having been
acquired largely unconsciously.

Leonardo followed Aristotle in insisting that mathematical
reasoning alone can give complete certainty in science, but he
parted company from Aristotle in seeing that this is a counsel
of perfection; in most sciences certainty is an unattainable
ideal. A science, Leonardo says, should be based on observa-
tion; it may properly use mathematics to discuss the observa-
tions, and ought preferably to end with a crucial experiment
to test its final conclusions. His general views on scientific
method were very like those which Roger Bacon had expressed
a century earlier, but Bacon’s vision had ever been restricted
by theological blinkers, whereas Leonardo’s mind worked
perfectly freely.

This new outlook on the methods of science was followed
by a new outlook on the universe and man’s position therein.
Copernicus brought forward evidence that Aristarchus had
been right in maintaining that the earth did not hold the
central position in the universe but, like the other planets,
was a mere wanderer in space which described a yearly orbit
round the sun.

ASTRONOMY

COPERNICUS (1473-1543). Mikola Koppernigk (latinised
as Nicolas Copernicus) was born at Torun (Thorn) in Polish
Pomerania on 14 February 1473. His father, an eminent
citizen of the town, had been born in Cracow, to which his
family had previously migrated from Silesia, There is more
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uncertainty about the ancestry of his mother, but it is thought
that she came of a wealthy Silesian family. When Nicolas was
10 years old, his father died, and his uncle, an eminent
ccclesiastic, educated him for high office in the Church. After
leaving school he studied at various universities until he was
more than 3o years old—first at the Polish University of
Cracow, and then at the Italian Universities of Bologna,
Ferrara and Padua in turn.

It was a prolonged education, but a cultivated man of those
days regarded all knowledge as his province, and did not limit
his education to acquiring skill in one particular calling. In
this spirit Copernicus acquired a profusion of knowledge in
the classics, in mathematics and astronomy, medicine, law
and economics, and of course in theology. This he did not let
lie idle, but put it to full use even after he had reached a high
position in the Church; we read of his curing the sick poor as
well as sick fellow-ecclesiastics, writing on economics, and
advising the Polish government on questions of currency,*
making his own scientific instruments, writing poetry and
even painting, at least to the extent of one self-portrait. He
also achieved success as an administrator, as an estate manager
and as a diplomat at a minor peace conference. Like Leonardo
before him, he was a man of wide knowledge and of varied
attainments, but his main interest was ever in mathematics
and astronomy.

These subjects figured largely in the teaching of the
medieval universities, and we find Copernicus attending
lectures on Euclid, on spherical geometry, on geography, on
astrology and on Ptolemaic astronomy.

This last was still the official astronomy of the universities
and of the Church, but a number of advanced thinkers were
already feeling sceptical about it, and advocating something
more like the heliocentric astronomy of Aristarchus; we have
already noticed the astronomical opinions of Bishop Oresme
of Lisieux, Cardinal Nicolas of Cusa, and Leonardo da Vinci.

* See p. 186 below.
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Another of the same way of thinking was Domenico Novaro,
who was Professor of Mathematics and Astronomy at Bologna
while Copernicus studied there and remained his friend after
he had left. The writings of the Pythagoreans, which had now
become accessible to European scholars, proclaimed that the
ultimate truth about the universe must consist of simple,
elegant and harmonious relations, and Novaro thought the
Ptolemaic astronomy too cumbersome to comply with this
criterion. We may assume that his doubts and criticisms
influenced the thoughts of the younger man, so that when the
latter returned to Poland to a Canonry in the Cathedral of
Frauenburg, he took the problem of the Ptolemaic astronomy
with him.

His reading showed that the philosophers of antiquity had
held varying opinions as to whether the earth stood at rest or
was in motion. In the dedication of his magnum opus De
Revolutionibus Orbium coelestium to Pope Pius III, he recalls
that ‘according to Cicero, Hicetas had thought that the earth
moved. . .and according to Plutarch others had held the same
opinion’.* This, said Copernicus, led him to long meditations
on the subject, which ultimately resulted in the system pro-
posed in his book.

Copernicus begins his discussion by remarking that ‘every
change of position which is observed is due to the motion
either of the observed object or of the observer, or to motions
of both.. . .If the earth should possess any motion, this would
be noticeable in everything that is situated outside the earth,
but would be in the opposite direction, just as though every-
thing were travelling past the earth. The relation is similar
to that of which Aeneas says in Virgil: ‘We sail out of the
harbour, and the countries and cities recede.” Copernicus

* In his De Placitis Philosophorum Plutarch writes: ¢ Aristarchus places
the sun amongst the fixed stars and considers that the earth moves round
the sun.” The first authentic translation of this work appeared in a book
by Georg Valla, De expetendis et fugiendis Rebus (1501), from which

Copernicus borrowed a diagram and an almost verbatim description of
the views of Aristotle and Aristarchus on the vastness of the universe.
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next suggests that the apparent daily revolution of the ‘sphere
of the fixed stars’ can be explaincd on these lines, the earth,
and not this sphere of stars, rotating once a day. This opinion,
he says, was held by the Pythagoreans Heraclides and Ec-
phantus, and by the Syracusan Nicetas (as told by Cicero),
who assumed the earth to be rotating in the centre of the
universe. He continues: ‘It would thus not be strange if
someone should ascribe to the earth, in addition to its daily
rotation, another motion also. It is said that the Pythagorean
Philolaus, no ordinary mathematician, believed that the earth
rotates, that it moves along in space with various motions,
and that it belongs to the planets; wherefore Plato did not
delay travelling to Italy to interview him.’

We have seen how the Ptolemaic system placed the earth
at the centre of the universe and supposed the sun to move
round it in a circular orbit. Out beyond the orbit of the sun
lay three more circular orbits in which nothing moved but
mathematical abstractions known as fictitious planets. The
real planets Mars, Jupiter and Saturn moved round these
fictitious planets in small circles known as ‘epicycles’. These
were all of the same size, and at every instant the planets were
at ‘corresponding’ positions in their epicycles, i.e. the lines
drawn from the fictitious planets to the real planets all pointed
in the same direction, which was the direction of a line drawn
from the earth to the sun (see fig. 20, p. 95).

This was obviously a very artificial arrangement, but its
very artificiality provided a clue to its true meaning. When a
child sits in a whirling ‘merry-go-round’ at a fair, distant
objects and spectators seem to the child to advance and recede
alternately—as a result of course of the child’s own motion.
If the child moves in a circle of 20 ft. radius, then outside
objects will appear to the child to move in circles of 20 ft.
radius, and at every moment they will all appear to be in
corresponding positions in these circles. The apparent motion
of many objects is a sort of ‘reflection’ of one real motion,
namely, that of the child.
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Copernicus thought that the apparent motions of the
planets in their epicycles could be explained on similar lines
as reflections of one real motion of the earth round the sun.
If so the whole motion of the solar system was onc of the
earth and planets moving in circular orbits round a fixed
central sun, so that the earth was simply one ‘wanderer’ of
many, while ‘the sun, as if sitting on a royal throne, governs
the family of stars which move round it’. It was not a new
hypothesis, being identical with that which Aristarchus had
proposed some 1800 years earlier. What Copernicus had done
was to show that the old system of Aristarchus could explain
the observed motions of the planets, or rather would produce
precisely the same appearances in the sky as the complicated
epicyclic motions of Ptolemy.

But this was true only of the Ptolemaic system in its simplest
and most primitive form, and it had long been known that
this did not fit the observed motions of the planets with any
great accuracy; it had needed amendment time after time,
first by Ptolemy himself and later by his Arabian successors,
until it had become very complicated indeed. Copernicus
could neither be sure of his own scheme nor expect others to
accept it, unless he could amend it to fit the best observations
available. It was here that Copernicus found his most serious
task, to which he devoted years of arduous toil.

Most of it was wasted. We know now that only one small
amendment was needed, namely, replacing the circular orbits
of the planets by slightly oval curves—to be precise, by
ellipses (p. 40) which were nearly, but not quite circular;
Kepler showed this in 1609. But Copernicus, with his mind
still soaked in Pythagorean and Aristotelian doctrines as to
the ‘naturalness’ and ‘inevitability’ of circular motion, could
not think of anything so simple as scrapping the circles of
the Ptolemaic scheme; the most drastic amendment he could
imagine was an addition of more circles. So he added some
new circles in the form of epicycles similar to those he had
just discarded, and increased the complexity of the circles
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already in the scheme by making these ‘eccentric’, i.e. by
supposing that the centres of the planetary orbits did not
coincide with the sun. In brief, he tried to get a better agree-
ment with the observations by just the same threadbare
devices as had been employed by the mathematicians of the
last 1400 years.

His inexperience as a practical astronomer increased his
difficulties, for he paid equal attention to all observations,
good and bad, ancient and modern, including a few of his own,
so that one bad observation could throw the whole system
out of gear. Actually he twice introduced unnecessary com-
plications to make room for phenomena which, as we now
know, had no existence except in his own faulty observations.
He did not aspire to a very high level of accuracy, for he is
reported to have said that if he could get an agreement to
within 10" of arc he would be as elated as Pythagoras had
been at the discovery of his famous theorem.

At last, after years of arduous toil, the system stood com-
plete. It naturally passed all observational tests, for he had
introduced one complication after another to make it do so.
These made its details as complicated as its central idea was
simple. Ptolemy had needed about eighty circles to explain
the phenomena known to him; Copernicus still had to employ
thirty-four. The complexity of the Ptolemaic system had been
alleviated rather than cured.

Copernicus sent a brief summary of his conclusions to his
astronomical friends under the title Commentariolus, but
he shrank from the task of preparing the whole work for
publication, so that ten years elapsed before he consented to
do this. But he gave permission to a certain Georg Joachim
(Rheticus), who had resigned from a chair of mathematics at
Wittenberg to go and work with him, to prepare a short
summary of the contents of the book, and this was published
in 1540 under the title De Libris Revolutionum Narratio prima.
Copernicus subsequently handed over the text of his whole
book to Rheticus, who undertook to revise it and prepare it

JGPs 9
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for the press. It is said that the printing was completed only
just in time for the author to handle the book as he lay,
paralysed and unconscious, on his death-bed.

In his dedicatory letter to the Pope, Copernicus explained
why he had hesitated so long before publishing his theories
to the world: ‘I considered what an absurd fairy-tale people
would consider it, if I asserted that the earth moved....The
scorn which was to be feared on account of the novelty and
absurdity of the opinion impelled me for that reason to set
aside entirely the book I had already drawn up.’

Notwithstanding this clear statement, it has often been
asserted that Copernicus held back his book from a fear that
it might incur the displeasure of the Church. It is hard to
find any evidence for this. Copernicus had made no secret
of his conclusions, but had circulated his Commentariolus to
many high officials of the Church; many had urged him to
publish his ‘revelation of the truth’, and he had been given
permission to publish his Narratio to a wider circle in 1540.
Actually we hear of no serious ecclesiastical opposition to
the book until 1616, when it was put on the ‘Index’, so
that all good Catholics were forbidden to read it. But many
things had combined to produce a different atmosphere by
1616.

The Lutherans, however, from Luther and Melancthon
down, had hated the book from the first, and fired many
broadsides of bad arguments against it.* Possibly they were
more keen-sighted than the official Church in seeing how
unorthodox its religious implications were.

Rheticus had not seen the book through the press himself,
but had entrusted the final stages to a friend of Copernicus,
a Lutheran minister named Andreas Osiander, who had made
no secret of his fears that the book might offend the Lutherans,

* Melancthon argued: ‘When a circle revolves, its centre remains
unmoved; but the earth is at the centre of the world, therefore it is
unmoved.” Luther wrote: ‘It says in Holy Writ that Joshua bid the sun
stand still, not the earth.” See H. Kesten, Copernicus and his World,
London, 1945.
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and had suggested describing its conclusions as only hypo-
thetical. He had written to Copernicus: ‘For my part, I
have always felt that they [hypotheses] are not articles of faith
but bases of calculation, so that even if they be false, it matters
not so long as they exactly represent the phenomena....It
would therefore seem an excellent thing for you to touch a
little on this point in your preface.’

Now that the manuscript of the book has been recovered,
after being lost for 250 years, we know that Copernicus did
not adopt this suggestion. But when Osiander received the
manuscript from Rheticus, he had the matter in his own
hands, and the recovery of the manuscript has shown what
use he made of his opportunity. He added to the title the
words ‘orbium coelestium’ (of the heavenly spheres), and so
enveloped the book in a Ptolemaic or even pre-Ptolemaic
atmosphere which is lacking in the original title. Next, and
much worse, he suppressed Copernicus’ original preface, and
substituted one of his own writing on the lines of his letter
already quoted, so that when the reader opened the book, he
was confronted with a preface suggesting that the scheme it
described might not be the true scheme of nature, but merely
a mathematical fiction which fitted the observations. And
for some time after its publication, there seems to have been
some doubt as to whether this was all that the new scheme
amounted to.

Worst of all, Osiander struck out all mention of Aristarchus;
the book as published does not even contain his name, with
the result that Copernicus has often been charged with
plagiarism, and even with dishonesty, as, for instance, by
Melancthon®* and by Erasmus Reinhold.! Nevertheless
the original manuscript contained no fewer than four refer-
ences to Aristarchus, describing him as ‘one of those ancient
philosophers who, besides the Pythagoreans, regarded the
earth as a planet’. We may conjecture that Osiander found

* Initia Doctrinae physicae, 1544.
t Hypotheses Orbium coelestium, 1551.



132 THE BIRTH OF MODERN SCIENCE

the idea of a moving earth so distasteful that he could not
endure any mention of the author of the idea.*

After showing that the hypothesis of a moving earth fitted
the observations, Copernicus proceeds to answer the objec-
tions which Ptolemy had raised against it (p. 94). One was
that if the earth rotated once a day, a terrific wind would
always be blowing from west to east, so that a bird which
once flew out into it would never be able to get back into its
nest; Copernicus, of course, explained that the air rotated
with the earth. Ptolemy had further objected that so rapid a
rotation of the earth would cause everything to fly to pieces;
Copernicus pointed out that if the apparent revolutions of the
stars about the earth resulted from an actual rotation of the
‘sphere of fixed stars’, then this sphere would be even more
liable than the earth to fly to pieces, because its circum-
ference was greater than that of the earth, and the speed of
motion would be correspondingly greater. Finally, ever
since the days of the Pythagoreans, it had been argued
that the earth could not move in space, since any such
motion would result in an apparent motion of the stars—a
‘reflected’ motion like that seen by the moving child of
p. 127. But no such motion was seen; the pattern of the
stars stood for ever unaltered, and the constellations did
not change their shapes. To this Copernicus answers that
the stars are so immensely distant that the relatively
minute motion of the earth in its orbit can make no
appreciable difference: ‘the earth and its orbit stand in the
same proportion to the size of the universe as a point does to
a clod, or an object of finite dimensions to infinity.” The fact
that Copernicus wrote out arguments of this kind shows that
he thought, and meant to prove, that the earth was actually
rotating and moving through space; his scheme was not a

* See two books in Polish, Twdrca Nowego Nieba (‘ The Creator of a New
Heaven’), by Jeremi Wasiutynski (1938), and Nicolas Kopermk, by Ludvik
Birkenmajer (1900). I am indebted to Mr Tadeusz Jarecki for bringing
these two books to my notice, and for very kindly translating extracts
from them into English for me.
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mere ‘basis for calculation’. This was also made clear in his
dedicatory letter to the Pope, where he speaks of his ‘com-
mentaries composed in proof of this motion’ of the earth
round the sun.

With his refutation of Ptolemy’s arguments, Copernicus
had proved his case, at least to those few who could rightly
assess his arguments. Man could no longer claim that his
home was the fixed centre of the universe round which all
else revolved; it was one of the smaller of the planets, and
like the other planets, it revolved round a far larger sun. If,
as man had hitherto believed, he was himself the climax and
crown of all creation, then he had been assigned a home in
space which was quite incommensurate with his importance,
a home, indeed, which stood ‘in the same proportion to the
universe as a point does to a clod’. Copernicus, it is true, had
given pathetically inaccurate estimates of the relative sizes of
the earth, the sun and the earth’s orbit round the sun, but
even so the general principle stood out clear and unassailable
—we live on a speck of dust.

Such conclusions might have been expected to make a
great stir in the minds of thinking men, but for a time they
made none at all. The reason was in part that Copernicus had
not only proved his case; he had spoiled it by over-elaboration.
Its real strength lay in the majestic simplicity of the central
idea—a moving earth replacing a moving sun. Copernicus
had so overlaid this central idea with detail that its main
advantage seemed to be the reduction of Ptolemy’s eighty
circles to thirty-four—a reduction in degree but not in kind.
The average man could hardly be expected to accept so
revolutionary a view of the universe, and one, moreover,
which upset some of his most deeply rooted convictions and
violated his religious feelings, merely because it changed
eighty into thirty-four.

Only a few mathematicians and astronomers expressed their
confidence in the new structure of the world, while the
majority of men remained hostile or indifferent until the
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telescope of Galileo began to provide visual confirmation of
its accuracy some 66 years later. Even then, one of Galileo’s
colleagues refused to look through the telescope, on the
ground that he saw no reason for reopening a question which
had already been settled by Aristotle. He was perhaps excep-
tional, but many felt genuine objections to the new doctrines
on religious grounds. The great astronomer Kepler (p. 164),
himself a convinced Copernican, wrote: ‘It must be confessed
that there are very many who are devoted to Holiness, that
dissent from the judgement of Copernicus, fearing to give
the Lye to the Holy Ghost speaking in the scriptures, if
they should say that the earth moveth and the Sun standeth
still.”* Even in 1669, the year in which Newton became
Professor at Cambridge, the university entertained Cosimo di
Medici with a dissertation against the Copernican astronomy."
And in the eighteenth century, Cassini (1625-1712), the
Director of the great Observatory of Paris, and one of the
most influential astronomers of his time, expressed himself
a convinced anti-Copernican, while the University of Paris
taught that the Copernican doctrine was a convenient
but false hypothesis. For a considerable period the new
American Universities of Yale and Harvard taught the
Ptolemaic and Copernican systems on a parallel footing,
implying that they were equally tenable. It was not until
1822 that the Roman Church gave formal permission for the
Copernican system to be taught as the truth, and not as a
mere hypothesis.

TYCHO BRAHE (1546-1601). On 14 December 1546, three
years after the death of Copernicus, was born Tycho Brahe,
the next great astronomer of this period. In many ways he
was the antithesis of Copernicus. The latter had been a great
mathematician and a great theorist, but was weak as an
observer; T'ycho was weak as a mathematician and theorist,
but great as an observer—one of the greatest, and perhaps

* Mathematical Collections and Translations, Salusbury, 1661.
t Cooper, Annals of Cambridge, 111, 536.
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the greatest, of all time, relative of course to the equipment
available in his day.

He was a Dane, the son of a Danish nobleman, although his
birthplace, Knudstrup in Scania, now belongs to Sweden. A
solar eclipse which occurred on 21 August 1560, while he was
a student at the University of Copenhagen, made a great
impression on him, and gave him a keen interest in astronomy,
so that he began to study the works of Ptolemy and attempted
simple observations with crude instruments of his own
making. After studying mathematics and astronomy at the
Universities of Leipzig, Wittenberg, Rostock and Basle, he
made a European tour, and met the Landgrave of Hesse, who
was an enthusiastic astronomer. The Landgrave must have
been impressed by Tycho’s ability, for he persuaded the King
of Denmark, Frederick II, to take the young astronomer under
his royal patronage. In due course, Frederick granted Tycho
a yearly pension and the island of Huen in the straits between
Copenhagen and Elsinore, on which to build himself an
observatory and a home. Here he built the famous observa-
tory which he called Uraniborg, and furnished so magnificently
and equipped so sumptuously that his modest pension soon
proved inadequate, and had to be supplemented by further
grants from the King.

When Frederick died in 1588, Tycho’s income was reduced,
and he left Uraniborg in 1597. Two years later, the German
Emperor Rudolph II invited him to Prague, granting him a
pension and a castle to use as an observatory. But Tycho’s
useful life was over, and before he had settled down to serious
work, he was struck down by a sudden illness and died on
24 October 1601.

Tycho opposed the doctrines of Copernicus because he
thought it contrary both to sound physics and to the clear
word of scripture for the massive solid earth to move in space.
He was also influenced by the old Ptolemaic objection that
the stars did not change their relative positions in the sky, as
they would have to do if the earth was in motion.
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And so he set to work to improve the Ptolemaic system
according to his own ideas. He kept the earth for the centre
of his universe, and the Aristotelian sphere of fixed stars for
its outer boundary; the sun still circled round the earth, but
(and here was the essential novelty) the other planets—
Mercury, Venus, Mars, Jupiter and Saturn—all circled round
the sun in epicycles. The arrangement is shown in fig. 21; it

Fig. 21.

gives the same apparent motion for the sun, moon and
planets as either the Copernican or the Ptolemaic systems
gave in their simplest forms, so that observation could not
decide between them. But Tycho’s system plays no serious
part in the history of science, because all later developments
of astronomy were made by believers in the Copernican
cosmology.

Tycho’s real service to astronomy was as an observer rather
than as a theorist; he introduced a new standard of accuracy
into astronomy. He attained this in two ways—by the use of
better instruments, and by the use of better methods. It may
seem an easy matter to obtain greater accuracy by making
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larger instruments, but actually the situation is not quite so
simple. The larger an instrument is, the more it bends under
its own weight, and a stage is soon reached when the bending
more than neutralises the advantages gained by the increased
size of the instrument. Tycho was able to employ large
instruments because they were of novel design, being
especially planned to escape this objection. He made an even
greater advance in the methods of observing. The older
astronomers had been content to rely on the best observation
they could make; no doubt it would be affected by some small
error, but this could not be avoided in an imperfect world.
Tycho saw the advantage of taking a great number of obser-
vations, all of the same quality, and then averaging the result;
accidental errors were now likely to be averaged out.

Using these methods, Tycho determined the more im-
portant constants of astronomy with a new accuracy, and
made fresh determinations of stellar positions, which he pub-
lished in his star catalogue of 1602. Probably his observations
on the positions of the planets were his best work of all—not
for any use he made of them, but for the part they played in
later developments. He handed them over to Johann Kepler,
an assistant whom he had engaged just before his death,
with results that we shall see later. But Tycho was an im-
prover rather than an originator; he plays a great part in the
history of astronomical technique, but figures little in the
history of thought.

Nevertheless, some of his work reached out beyond the
merely technical problems of astronomy. On the evening of
11 November 1572, he observed a bright new object in the
constellation of Cassiopeia. We know now that it must have
been a ‘nova’ or new star; these objects appear at fairly
frequent intervals, flashing out very suddenly and gradually
fading back into obscurity. But to Tycho it was ‘a miracle
indeed, either the greatest of all that occurred in the whole
range of nature since the beginning of the world, or one
certainly that is to be classed with those attested by the Holy
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Oracles, the staying of the Sun in its course in answer to the
prayers of Joshua, and the darkening of the sun’s face at the
time of the Crucifixion’.*

If this new object had belonged to the solar system, it
would have appeared to move against the background of the
fixed stars, as the planets do. As Tycho could observe no
such motion, he concluded that the object must belong to the
‘sphere of fixed stars’—in brief, it must be a star. The
Aristotelians had taught that everything in these outer regions
of space was perfect, and therefore unchanging: ‘All philo-
sophers agree, and facts clearly prove it to be the case, that in
the ethereal region of the celestial world no change, in the
way either of generation or corruption, takes place; but that
the heavens and the celestial bodies in the heavens are without
increase or diminution, and that they undergo no alteration.’*
Tycho, by showing from direct observation that these regions
were no more immune from change than the regions nearer
to the earth, had dealt a shattering blow to the Aristotelian
cosmology.

GIORDANO BRUNO (1547-1600). The prominent scientists
of the last few centuries had been mainly ecclesiastics, and
most of them had occupied high positions; perhaps this is not
surprising, since knowledge and learning belonged almost
exclusively to the Church. The scientist to whom we come
now was of a very different type.

Giordano Bruno had been born at Nola near Venice in
1547, and became a Dominican at the age of 15. He was a
man of independent mind, of an aggressive, intolerant and
turbulent spirit, with more than a touch of the mountebank
and charlatan in his make-up, so that we can imagine that he
was a cause of some trouble to his monastic superiors. Learn-
ing that he was under suspicion for heresy on the subjects of
transubstantiation and the immaculate conception, he fled
from Italy to wander in France, England, Germany and
Switzerland. After teaching in the Universities of Lyons,

* ‘De nova Stella’, Opera, vol. 1. t Ibid.
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Toulouse, Montpellier and Paris in turn, he finally came to
London in 1583. Here he published three small books in
Italian, bearing false Venetian imprints, of which one, Dell’
infinito Universo e Mondi (‘On the infinite Universe and its
Worlds’), is of special scientific interest.

In philosophy, Bruno was something of a pantheist. He
saw nature as a world of life and beauty, full of activity and
pulsating with divinity. And, since there is nothing finite
about God, so there can be nothing finite about the universe.
He wrote: ‘It has seemed to me unworthy of the divine
goodness and power to create a finite world, when able to
produce beside it another and others without end, so that I
have declared that there are endless particular worlds similar
to this earth; with the Pythagoreans I regard it as a star, and
similar to it are the moon, the planets, and other stars, which
are infinite in number, and all these bodies are worlds.” In
another place he explains that cach world has its own sun
round which it moves.

In this way, Bruno carried astronomy out beyond the solar
system, and introduced the modern view of the system of the
stars. He was treading the road which had been opened by
Nicolas of Cusa and Copernicus, but he was incomparably
more revolutionary than either. He displaced not only the
earth, but also the sun, from the centre of the universe—in
fact, there no longer was any centre, for ‘as the universe is
infinite, no body can properly be said to be in the centre of
the universe or at the frontier thereof’. Man’s home in space
occupied no preferential position, and could expect no pre-
ferential treatment; all the planets circling round all the suns
stood on the same footing; all were evidence of the goodness
of God, and sometimes he thought that all were God.

The Church had passed over the revolutionary doctrines
of Copernicus without showing any active disapproval, but
this new revolution touched its interests much more closely.
Religion meant nothing unless the Creator was distinct from
His creation; Bruno was preaching that they were identical.
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It was essential for the Church to have room for a heaven and
a hell; it had so far placed hell inside the earth, and heaven
beyond the ‘sphere of the stars’. Bruno’s new cosmos left no
room for a material heaven. Copernicus’ doctrines had not
called for a restatement of any of the fundamental doctrines
of religion; the new doctrines of Bruno called for a restate-
ment of many, unless God was to become a mere tribal god
of the Planet Earth. Living though he was on a moving
planet, man might still have been the centre of God’s interest,
the main concern of his Creator; Bruno’s doctrines now
implied that there were infinite other worlds of the same
kind which might share the interest of the Creator. All this
was too antagonistic to the established doctrines of the Church
to be passed over in silence.

In 1593 Bruno was imprudent enough to return to Italy,
and the Inquisition were informed where he was. They
captured him, kept him in prison for seven years, and finally
tried him on a number of counts. Finally, the judgement
was pronounced: he was to be ‘punished with all possible
clemency, and without shedding of blood’, a formula which
in practice meant death by burning at the stake. Bruno is said
to have commented to his judges: ‘ Perhaps you who condemn
me are in greater fear than I who am condemned.” Some have
thought this trial and judgement one of the most shameful
incidents in the record of the Church; others remind us that
we do not quite know on what grounds Bruno was condemned,
since it was not the practice of the Inquisition to make public
the grounds on which a judgement was based. He was cer-
tainly charged with more than unorthodox scientific opinions;
he had denied the doctrines of transubstantiation and of the
immaculate conception, and had written a pamphlet, On the
T'riumph of the Beast, in which the title-part was assigned to
the Pope.

So Bruno died, and henceforth he could influence human
thought only through the meagre writings he had left behind
him. The chances seemed small, but the improbable came to
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pass. In the very year of his death another book appeared in
which the same views were advanced, no longer by an obscure
monk but by a writer of authority and position—William
Gilbert (1540, or perhaps 1544 or 1546, to 1603), the personal
physician to Queen Elizabeth. The book, De Magnete, dealt
mainly with physics, and has indeed become famous as one
of the corner-stones on which modern electrical science has
been built. But its last chapter describes a hypothetical
scheme of the universe; it is the scheme of Bruno, although
his name is nowhere mentioned. This might be explained as
two minds thinking alike were it not thatin 1651 a posthumous
book by the same author appeared,” in which the same
ideas are advanced as in the earlier book, and are now definitely
attributed to Bruno. In this and similar ways the spirit of
Bruno lived on, and in its own time produced even greater
changes in thought than the hypotheses of Copernicus.

The year 1600, the closing year of the century, the year of
Bruno’s death, the year of publication of De Magnete, the
year in which electrical science was born, forms a fitting mile-
stone at which to close the present chapter, but we must first
record the developments which had taken place up to this
time in other sciences than astronomy.

MECHANICS
The sixteenth century also produced noteworthy advances in
mechanics, which had progressed but little since the time of
Archimedes. This was now established on a firm basis, largely
through the investigations of two men—the Fleming Stevinus
of Bruges, and the Italian Galileo Galilei. Although they
were almost contemporaries, the two men worked indepen-
dently, and their results supplemented one another to make a
solid foundation for a new science of mechanics. Stevinus
was concerned mainly with the mechanics of objects at rest
(statics), and Galileo mainly with the mechanics of objects in
motion (dynamics).
* On our Sublunary World, a New Philosophy.
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StaTicS

STEVINUS (1548-1620) was an engineer who had attained
to high rank in the Dutch army. His most striking achieve-
ment was the discovery of the law which we now call the
‘Parallelogram of Forces’.

It is rare for any object to be under the action of only one
force; more usually many forces are at work at the same time.
A falling leaf, for instance, is acted on by the gravitational
attraction of the earth (the ‘weight’ of the leaf), by the resist-
ance of the air, and probably also by the force of the wind. If
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it were acted on by its weight alone, it would fall vertically to
the ground, but if the pressure of an east wind is added, it
will be blown westward, and will fall farther to the west than
it would otherwise have done. The question is: how much
farther? Or in more general terms, how are we to estimate
the combined effect of two or more forces when they act
together?

Stevinus did not experiment to find the answer, but con-
sidered an ideal experiment of which the result could easily
be foreseen. He imagined a wedge like ABC in fig. 22 to be
firmly fixed with the longest side AC horizontal, and to have
an endless uniform chain ABCD strung round it. Without
experimenting, Stevinus knew that the chain would lie at rest
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as in the diagram. For the only conceivable alternative was
perpetual motion, and it had been a commonplace in science
from the time of the Greeks down to Leonardo that this could
not occur.

Stevinus next assumed—this time from intuition, and not
from either reasoning or experiment—that the hanging part
of the chain, ADC, could be cut away without disturbing the
equilibrium of the remainder. If this were done, pieces 4B,
BC of the chain would stand in equilibrium. As the weights
of these pieces were in proportion to their lengths, Stevinus
inferred that any two objects standing on the faces AB and

A
/ 7
p R

(o) i Q B R P
Fig. 23. Fig. 24.

BC and connected by a string would be in equilibrium if their
weights were in the ratio of the lengths 4B and BC. From
this, simple mathematics led to a rule for determining the
effect of two forces acting simultaneously on the same object.
The rule is as follows.

Suppose that two forces act simultaneously on an object at
a point O, and that they act in the directions O4, OB in
fig. 23. From the lines O4, OB we cut off lengths OP, OQ
proportional to the intensities of the two forces, and complete
the parallelogram OPQR. Then the rule tells us that the two
forces will have the same effect as a single force of intensity
proportional to the length OR, acting in the direction of OR.

If, for instance, OP in fig. 24 represents the weight of a
falling leaf, and OQ, on the same scale, represents the force of
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the wind on the leaf, then the leaf will fall as though it were
acted on by a single force proportional to OR.

This ingenious argument rested on a mixture of experimental
knowledge (as to the impossibility of perpetual motion), of
intuition, and of assumption. It was important in two ways:
it clarified the idea of a body being under the action of a
number of forces simultaneously, and it yielded a result which
was indispensable for the further progress of mechanical
science.

Stevinus also enunciated the principle of ‘virtual displace-
ments’, which is popularly expressed in the saying that ‘ What
we gain in motion, we lose in power’. Itis specially applicable
to problems of pulleys and levers. Suppose that on moving
one point of a mechanical system—e.g. one end of a see-saw
-—through a distance x, we find that some other point of the
system—e.g. the other end of the see-saw—has moved
through a distance y. Then the principle asserts that forces
X and Y can maintain equilibrium when applied at these two
points if their intensities are in the ratio of y to x. For
example, if two boys of weights 6 and 7 stone are to balance
on a see-saw, their distances from the pivot must be in the
ratio of 7 to 6. The principle was not a new discovery of
Stevinus, for it had been vaguely known to Aristotle and
Archimedes, and in a different form to Leonardo.

DyNaMiIcs

Stevinus explains all this in a book Statics and Hydrostatics
which he published in 1586, and further describes how he
and Grotius had experimented on the fall of objects under
gravity, and found that when a light weight and a heavy
weight were dropped from the same height they took the
same time to reach the ground. This was contrary to the
Aristotelian physics, which had taught that objects were light
or heavy by their intrinsic nature, and that all substances had
their natural places in the universe which they strove to reach
with varying degrees of success, so that heavy bodies fell and
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light bodies rose with speeds depending on their lightness
and heaviness. Aristotle would have asserted that bodies of
different substances would not reach the ground at the same
time; Stevinus and Grotius now proved that they did.

GALILEO (1564-1642). This was all very important, but
the contribution of Galileo was even more so. Galileo Galilei
was born at Pisa on 18 February 1564, the day on which
Michael Angelo died, his father being an impoverished noble-
man, whose main occupations and interests were music and
mathematics. He was educated at the Monastery of Vallom-
brosa, where we may be sure that he received a conventional
Aristotelian education; he studied Greek, Latin and logic,
but showed a distaste for science. Then his seniors urged him
to become a novitiate of the order, and his father, demurring,
sent him to the University of Pisa to study medicine. A
lecture on geometry, which he heard by accident, convinced
him that mathematics was far more interesting than medicine;
he is reported to have hung about the door of the mathe-
matical classroom to pick up such crumbs as he could of the
knowledge which was being imparted within. When the
authorities heard of this, they transferred him from medicine
to mathematics and science. In 1585 he had to leave the
university from lack of funds, and returned to Florence,
where he lectured and made such a scientific reputation that
he was appointed to a lectureship in his old University of
Pisa at the early age of 25. But an independent mind, a
sarcastic temperament and a sharp tongue soon made him
unpopular with all whose opinions differed with his own. He
held his lectureship for only two years, and was then appointed
to the Professorship of Mathematics at Padua, a position
which he held for the next 18 yeass.

At Pisa he set to work to discover the true principles of
mechanics, having long felt convinced that the conventional
Aristotelian doctrines on the subject were erroneous. He
began by dropping bodies of different weights from the same
height—according to one account, from the top of the leaning

JGPS 10
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tower at Pisa—to test the Aristotelian doctrine that different
bodies fell at different rates, and found that a cannon-ball
and a musket-ball took the same time to fall, a confirmation
of the result which Stevinus and Grotius had obtained at
Delft. Here was conclusive proof that something was wrong
with the Aristotelian mechanics; Galileo set to work to find
what it was.

The speed of a falling object obviously increased throughout
the fall, as Leonardo had insisted, and Galileo first tried to
find the law which governed this increase. His first conjecture
was that the speed at each point might be proportional to the
distance through which the body had fallen, but he soon
found that if this were the true law of fall, a body would never
get started; it could literally stand suspended in the air without
falling at all. He next conjectured that the speed at each
instant might be proportional to the time that had elapsed
since the body had been set free, and set to work to test this
conjecture. It was, of course, hopeless to try to measure
either the speed or the time of fall directly. But Galileo saw
that if his conjecture were sound, then the speed at any point
would be just double the average speed up to that point, and
this average speed could be obtained by dividing the distance
of fall by the time of fall. In theory, then, Galileo could test
his conjecture by measuring the times taken by an object to
fall through different heights—yet how was he to measure
such short periods of time, when the only methods known
for measuring time were by sundial, by burning candles or
oil-lamps, by sand-glasses and water-clocks, and by very
crude mechanical clocks?

Galileo improved the water-clock in a very ingenious way,
by letting the water drip into a receiver and then weighing
the amount which had fallen with great accuracy, but the
times to be measured were still uncomfortably short. Galileo
accordingly slowed his experiments down, by substituting a
slow roll down a gentle slope for the rapid vertical fall, in the
belief that the same laws must govern both, as indeed is the
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case. He set up a gently sloping plank, some 12 yards in
length, and made polished steel balls roll down a narrow
groove cut into it. With this simple apparatus he was able to
verify his conjecture that the speed of fall increased uniformly
with the time—the law of ‘uniform acceleration’. It was one
of the great moments of the history of science.

For it now became clear that the effect of force was not to
produce motion, but to change motion—to produce accelera-
tion, and a body on which no force acted would move at a
uniform speed.

The Aristotelians had taught that all motion needed a
force to maintain it, so that a body on which no force acted
must needs stand at rest. In accordance with these ideas,
Aristotle had himself introduced his Unmoved Mover (p. 65),
God Himself, to keep the planets in motion, while the
medieval theologians had postulated relays of angels for the
same purpose. It now appeared that to keep a body in
motion it was only necessary to leave it to itself; a body acted
on by no force would not in general stand at rest, but would
move with uniform speed in a straight line, because there
would be nothing to change its motion. Galileo checked
this by letting his rolling steel balls continue their motion on
a horizontal plane; they moved with undiminished speed
until they were checked by friction and the resistance of
the air.

This last observation was not altogether new; it was too
simple and obvious for that. Others had noticed that a rolling
ball would continue its motion for some time, but had
adduced this as a proof of the naturalness of circular motion—
a rolling sphere persisted in its motion because every particle
of it was then moving in a circle, but if the rolling object was
irregular in shape, so that the circular motion was impossible,
then the motion soon stopped.

Neither was the idea new that motion tended to persist in
the absence of all force. We have seen that Leonardo had
declared that ‘every body has weight in the direction in

10-2
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which it is moving’, while Plutarch had put the thing even
more clearly when he wrote (A.D. 100) that ‘everything is
carried along by the motion natural to it, if it is not deflected
by something else’.* But Galileo was the first to establish the
principle experimentally; where others had conjectured,
Galileo proved.

Yet, strangely enough, he never announced the principle
with perfect clearness. Perhaps Descartes was the first to do
so, when he wrote (1644): ‘When a body is at rest, it has the
power of remaining at rest and of resisting everything which
could make it change. Similarly when it is in motion, it has
the power of continuing in motion with the same velocity and
in the same direction.” Thirty years later, Huygens restated
it in the form: ‘If gravity did not exist, nor the atmosphere
obstruct the motion of bodies, a body would maintain for
ever, with equable motion in a straight line, the motion once
impressed on it.”' In 1687 Newton again restated it in his
Principia (p. 190), and made it the foundation of his whole
system of dynamics. But the main credit for the law which
was to revolutionise the whole of mechanical science must go
to Galileo and his experiments.

Galileo next discussed how a body would move when forces
acted on it in some direction other than that of its motion; a
projectile moving through the air while gravity acts on it is an
obvious instance. Galileo proved that if the resistance of the
air were negligible, then the path of every projectile would be
a parabola, one of the conic sections on which the Greeks had
expended so much patient labour; these curves now re-entered
science as essential parts of the great scheme of nature, and
not as mere abstractions of the mathematicians.

In this case the resistance of the air is not negligible, and
Galileo did not know how to allow for it. But in the next
problem which he studied, air resistance was too slight to
introduce any complications. In his early days at Pisa, he had

* De Facie in Orbe Lunae.
t Horologium Oscillatorium, 1673.
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Galileo’s design of a pendulum clock
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watched the roof-lamp of the Cathedral swinging in the
breeze, and noticed that a small swing took as long a time as a
great one. Here he had had no clock except his own heart, and
had timed the oscillations by counting his pulse. He now
confirmed these primitive observations by exact experiment
in the laboratory. Not only did the time of swing of a
pendulum prove to be the same whether the swings were
great or small, it was also the same, whatever the material
of which the swinging mass was made; other things being
equal, a ball of lead would swing to and fro in the same time
as a ball of cork. This showed that gravity caused all sub-
stances to increase their speed of fall at the same rate.

Late in his life, Galileo saw that this property of a swinging
pendulum might make it possible to construct a clock to keep
better time than the crude instruments then in use. The main
difficulty was to devise some means of maintaining the motion
of the pendulum, possibly by drawing on some external source
of power, as, for instance, a falling weight. Galileo thought
that he had solved this problem, but he never constructed
such a clock himself, and neither did his son Vincenzio nor
his pupil Viviani to whom he gave instructions; it was first
done by Huygens who patented his device in 1657, and
described it in his IHorologium Oscillatorium (1673).

Only two of the five parts of this famous book dealt directly
with clocks; the rest contained much that was new in general
mechanics. Most important of all, it contained a discussion
of the so-called  centrifugal force’—the force which a whirling
string exerts on the string by which we hold it. Huygens
showed that centrifugal force in general is proportional to the
square of the speed of the moving body and inversely pro-
portional to the diameter of the circle in which the body
moves. Its amount per unit mass is given by the well-known
formula F=9?/r, which Newton used to calculate the gravita-
tional force which the sun must exert on a planet to counteract
centrifugal force and keep the planet moving in its circular
orbit.
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In this and similar ways the mechanics of solid bodies was
put on a sound theoretical and experimental basis, the
statical part mainly by Stevinus, and the dynamical part by
Galileo.

Hyprosrtarics

The same story was repeated in the mechanics of fluids,
which, when Stevinus and Galileo first appeared on the scene,
still stood much where Archimedes had left it.

The Aristotelians had said that the shape of a body deter-
mined whether it would sink or float in water; a needle, for
instance, or a leaf floated, while a cube or a sphere sank.
Archimedes had known better than this; his famous experi-
ment with the crown had depended on the density or ‘specific
gravity’ of the metal, and Archimedes understood that it was
this, rather than its shape, that determined whether an object
would float or sink. The Arabians had been familiar with this
idea, and had determined the specific gravities of a number
of substances.

Galileo now performed a magnificently simple experiment
which settled the question once and for all. He let a ball of
wax sink to the bottom of the water in a vessel, and then in-
creased the density of the liquid by adding salt to the water.
When the density reached a certain value, the ball of wax was
seen to float up to the surface of the liquid. A body, then, did
not sink or float according to its shape, but according to its
density relative to the fluid in which it was immersed.

Stevinus now studied the conditions inside a mass of fluid.
Fluid substances may be divided, broadly speaking, into
viscous (or sticky) substances like pitch or treacle, and non-
viscous liquids like water or wine. Fluids of the latter kind
have no cohesive force, whence it can be shown that, if the
liquid is standing at rest, there must be a perfectly definite
pressure at every point, this being the force exerted by the
liquid on a unit area of surface, independently of the orienta-
tion of the area. This idea of a definite pressure at every point
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had been introduced into science by Archimedes and revived
by Leonardo. Stevinus now showed that the pressure at any
point in a perfectly non-viscous liquid would depend only on
the ‘head’ of liquid above the point, so that it would, for
instance, be the same at any two points both of which were
10 ft. below the surface of the sea. This law provided a simple
explanation of the so-called ‘hydrostatic paradox’—that the
thrust which a liquid exerts on the floor of a containing vessel
depends only on the area of the floor and its depth below the
surface of the liquid, but does not depend on the shape of the

Fig. 25.

vessel. Stevinus proved these laws by laying a close-fitting
plate on the floor of his containing vessel, and measuring
what pull was required to raise this against the pressure of
the water in the vessel. By experimenting with vessels of
different shapes, Stevinus verified the result stated above. By
using a vessel which terminated in a long narrow tube, as in
fig. 25, a slight weight of water could be made to exert a very
great pressure; Stevinus remarked that 1 lb. of water could
be made in this way to exert a pressure equal to the weight of
100,000 lb. of water. This is the principle used in the
‘hydraulic ram’ and the hydraulic brakes of motor-cars.

In this way the science of hydraulics was put on a sound
basis of theory and experiment, although its main develop-
ments did not occur until the next century.
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PHHYSICS AND CHEMISTRY

There is little enough to record in the other sciences. In
physics the outstanding event was the publication of Gilbert’s
De Magnete (p. 141) in 1600. Its full title was De Magnete
magneticisque Corporibus et de magno Magnete Tellure (‘On
the Magnet and Magnetic Bodies, and on that great Magnet
the Earth’), but it dealt with more subjects than are enumer-
ated in this title, providing a foundation for electrical science,
describing various phenomena and experiments in statical
electricity to which we shall return later (p. 276), and intro-
ducing the word ‘electricity’ for the first time (fAextpov=
amber). Except for this, and certain very important advances
in optics, the sciences of physics and chemistry stood much
where they had been left by the Arabians.

Yet we cannot overlook the strange Swiss chemist-
physician, Aureolus Philippus Theophrastus Bombast von
Hohenheim (c. 1490-1541), who is better known under his
Latin name of Paracelsus. Ile was the son of a physician and,
after studying medicine at Basle and Wurzburg, was himself
appointed Professor of Medicine at Basle in 1526. Personally
he was insufferably conceited, arrogant and boastful; on being
appointed Professor, his first act was to show his contempt
for his great predecessors Galen and Avicenna by publicly
burning their works. His own works, incidentally, are badly
written and incredibly difficult to understand. Yet he may
almost claim to have been the first true chemist in the whole
history of science.

His interest was mainly in the curative uses of chemistry
or, as would then have been said, in iatro-chemistry. We
have seen how the Arabians, following a lead given by
Jabir-Ibn-Hayyam (p. 105), had replaced the four Pythagorean
elements by three ‘principles’, which they described as
sulphur, mercury and salt. Sulphur did not mean our
chemical element of atomic weight 32, but that quality of a
substance which made it combustible, or, as we might now



THE BIRTH OF MODERN SCIENCE 153

say, its hunger for oxygen. Salt meant that quality which
enabled a substance to resist the action of fire, or the residue
which remained after calcination, while mercury was used to
signify the characteristic quality of metals. Gold, for instance,
was said to contain a very pure mercury; copper contained
no sulphur, but much salt and mercury, and so on. Late in
the fiftcenth century, Basil Valentine, a Dominican monk,
proposed to add a fourth principle Archaeus, the principle of
force or energy, which produced all the activity and changes
of the world.

Paracelsus accepted most of this, but replaced Valentine’s
Archaeus by the ‘vital spirits’ of early Greek thought. He
then proceeded to develop a chemo-therapy of his own,
asserting that every organ of the body had its own brand of
vital spirits, and that maladjustment of these led to all the
various ailments which affected the human body, so that these
could be cured by dosing the sufferer with the right chemical
substance.

"This led to his trying the cffects of various chemicals, both
poisonous and non-poisonous, on the bodies of his unfortunate
patients, and this in turn led to his expulsion from Basle.
But before this happened, he lcarned how to prepare a great
number of hitherto unknown chemicals, and this gave a start
to modern chemistry, which began to disentangle itself from
the alchemy which had hitherto usurped its place.

We read, for instance, of Paracelsus letting vinegar act on
iron filings and so producing hydrogen, without in the least
suspecting that he had discovered the most fundamental of all
chemical substances. Still more remarkable, he seems to have
prepared ether, which he called ‘extract of vitriol’, and dis-
covered its anaesthetic properties, without realising that he
had made one of the most useful discoveries of medical
science. Chickens, he found, could be put to sleep with it,
and awakened uninjured ‘after a moderately long time’. A
few years later another physician, Valerius Cordus (1515-44),
again described how to prepare ether from sulphuric acid and
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alcohol, but still its practical value as an anaesthetic passed
unnoticed.

This period saw the invention of two of the most useful of
scientific instruments, the microscope and the thermometer.
The invention of the microscope is generally attributed to
Zacharias Jansen, aspectacle-maker of Middelburgin Holland,
who is said to have discovered the essential principle acciden-
tally. But his instruments were more like small telescopes
than what we now call a microscope, a double convex lens
acting as an object glass and a double concave lens as eyepiece.
The combination was mounted in a tube of perhaps 18 in.
length and 2 in. diameter.

The thermometer was invented by Galileo, according to
his disciple Viviani, in or about the year 1592. We ought
perhaps to say reinvented, for Hero of Alexandria had under-
stood the principle, and had used it for some of his mechanical
toys, while a certain Philo of Byzantium is said to have made
similar instruments at about the beginning of the Christian
era. Galileo’s thermometer consisted of a glass bulb, ‘about
the size of a hen’s egg’, from one point of which a thin tube
was drawn out, no thicker than a straw, but several inches
long and open at the far end. To use the thermometer the
open end of the tube was placed in a vessel of water. If the
bulb was now heated, the air in it expanded so that some of it
forced its way out of the tube and through the water. As the
bulb cooled again, water was sucked up into the tube, and its
amount showed by how much the bulb had been heated. The
instrument did not, of course, measure the absolute tem-
perature of the hot bulb, but only the difference between this
and the temperature from which the bulb started. Within a
few years of its invention, the instrument was in use as a
clinical thermometer, the patient being told to put the egg-
sized bulb in his mouth.
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MATHEMATICS

More important in many respects than the developments in
physics were the developments in mathematics. It was an
age of useful, rather than of great, mathematicians, and the
new knowledge gained was perhaps less important than the
new methods of acquiring knowledge.

Prominent among the mathematicians of the period was
Niccolo Fontana (1500-59), who was better known as Tartag-
lia (the stammerer). As a boy his skull had been broken and
his jaws and palate cut open when the French had sacked his
native town of Brescia—hence the defect of speech from
which he got his nickname. After becoming Professor of
Mathematics at Venice, he published a book (Nova Scientia,
1537) in which he investigated the motion of bodies under
gravity and discussed the range of projectiles, stating that the
range is greatest when the projectile is fired at an elevation of
45°, which would be accurate if air resistance could be
neglected. He also published a treatise on numbers,* in which
he showed how to derive the expansion of (1 +x)*!! from that
of (1+x)" and so took the first step towards the binomial
theorem.

In 1530 he stated that he could solve a restricted type of
cubic equation, i.e. an equation involving ¥3, as well as the
x? and x of the ordinary quadratic equation which Diophantus
had solved—and a certain Antonio del Fiore challenged him
to a mathematical contest in which each contestant was
to set the other thirty problems involving cubic equations,
and the stakes were to go to whoever solved most. On
receiving this challenge, Tartaglia set to work and discovered
the general solution of all cubic equations, so that he won
with the greatest ease.

But now another mathematician appeared on the scene—
Girolamo Cardan (1501-76), a man of brilliant ability but
unstable mind. He was a physician by profession, holding

* Trattato generale di numert et misure (1556).
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Chairs of medicine in the Universities of Milan, Padua and
Bologna in turn, but made himself a European reputation by
his works on astrology and algebra. His principal work De
Varietate Rerum (1557) is noteworthy for its suggestions for
teaching the blind to rcad and write by their sense of touch,
and for teaching the deaf to converse by the use of sign-
language.

When the result of the contest between Tartaglia and
Antonio del Fiore was made known, this man Cardan im-
plored Tartaglia to show him how to solve cubic equations,
and obtained the secret, after giving a pledge that he would
keep it to himself. Some fifteen ycars later he published
it in his treatise on algebra,* but without any mention of
'Tartaglia, so that to this day the solution is commonly
described as Cardan’s solution. When Tartaglia made a stir,
Cardan excused himself on the ground that he had only been
given the result and not the method of solution. Tartaglia,
nevertheless, challenged him to a duel, the weapons to be—
mathematical problems. Cardan failed to appear at the
appointed time, and the meeting ended in disorder.

The biquadratic equation (which involves a* as well as «%,
x* and x) was first solved by Ferrari, a pupil of Cardan, in
1540, and Cardan published it in the same book. Equations
of still higher degree do not admit of exact solution, as various
mathematicians proved in the nineteenth century.

Cardan’s book had a more serious interest, since it con-
tained the first known discussion of ‘imaginary’ quantities,
i.e. quantities involving the square root of —1. The layman
in mathematics may feel but little interest in imaginary

* Artis magnae, sive de Regulis Algebrae, liber unus.,

t The solution of the cubic is a simple matter to have caused such a
commotion. Any cubic equation x°+px?+...=o0, can be reduced to the
form y3+qy=r by substituting ¥ — §p for x. On comparing this equation
with the simple formula (a—b)*+ 3ab (a—b)=a3—b*, we see that a—b
will be a solution of the equation if @ and b are chosen so that 3ab=q and
a®—b*=r. Writing the first of these equations in the form a%®=13'%¢%, we
readily find the values of a® and 4% and hence of a—b.
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quantities on the ground that they cannot exist, or at least
cannot be understood; he probably means that they cannot
be represented pictorially, like real quantities such as 2 or
—2. But they play just as important a part in modern mathe-
matics as do real quantities, and they are of special consequence
to the physicist because of their occurrence in the theories of
wave-motion, alternating currents of electricity, and relativity.
The introduction of imaginary quantities into mathematics
was the beginning of a great extension of the subject, the end of
which cannot yet be seen. Cardan showsamongst other things
that an equation may have cither real or imaginary roots, and
that the imaginary roots, if any, always occur in pairs.

Shortly afterwards, an Italian mathematician Bombelli
treated the same subject in rather more detail, but after him
the subject of imaginary quantities had to wait two centuries,
when it received exhaustive treatment at the hands of Euler
(p. 231), Gauss (p. 27()) and others. Bombelli did further
useful work in improving algebraic notation, although his
efforts were less successful than those of Vieta, to whom we
now turn.

FRANCOIS VIETE (1540-1603), better known under his
Latinised name of Vieta, was a Irench lawyer and public
servant who devoted his leisure to mathematics, in which he
ultimately achieved a considerable reputation. 'T'his rested in
part on his success in solving a problem involving the solution
of an cquation of the 45th degree which Adrian Romanus,
Professor of Mathematics in the University of Louvain, had
issucd as a challenge to the world. Like many of these
‘challenge’ problems, it was showy rather than solid. Romanus
knew the ordinary formula for sin (4 + B) (p. 93), and from
this it was easy to calculate sin 24, sin 34, sin 44, etc., in
succession. Actually Rheticus had given the values of sin 24
and sin 34, but Romanus had apparently calculated values up
to sin 454, expressing them in powers of sin 4, and the
equation of his problem was simply sin 454 =0, written in
the disguise of a power series.
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King Henry IV of France brought the challenge to the
notice of Vieta, who by a stroke of luck had also worked out
the general formula for sin 74, and so was able to hand the
King a solution within a few minutes; it was of course sin 4°.
This success and the decoding of a despatch in cypher gained
for Vieta a great reputation in France, but our interest in him
is that he was largely responsible for our present algebraic
notation, and for the introduction of decimals into calcula-
tions.

Up to the time of Bombelli, some mathematicians had used
entirely distinct symbols, as, for instance, 4, B, C, D, ...,
to denote the quantities we now write x, x% 3, x4, ..., while
others had used R or Rj (radix), Z or C (census), C or K
(cubus). Then Bombelli introduced the symbols W, &, 3, W.
Vieta now replaced these by 4, A quadratus, 4 cubus, 4
biquadratus, etc., and subsequently improved this to 4, Ag,
Ac, Aqq, etc., so giving to algebra pretty much its present
form. His introduction of our present decimal notation for
fractions was perhaps even more useful. The Flemish mathe-
matician Simon Stevinus (1548-1620) had already introduced
such a notation, but it was awkward and unwieldy; the number
which we write as 3-1416 was written first as

3010 4@10 6@

and later as 3, 1'4"'1"'6!. Vieta introduced the far simpler
notation 3,1416, which is still used on the continent, although
we have replaced the comma by a stop. This last change, so
far as we know, was introduced in 1616 by Napier’s friend
Henry Briggs (1561-1631), who was then Gresham Professor
of Astronomy in London, and subsequently became Savilian
Professor at Oxford.

A far greater achievement was the invention of logarithms
by another amateur, John Napier (1550-1617) of Murchiston,
Scotland. He was a man of wealth and position who had
chosen religious and political controversy for his main occu-
pation in life, and mathematics for his hobby. Vieta’s use of
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powers might well have drawn renewed attention to the
formula A™x A®= A™", which was as old as Archimedes
(p- 76), and from this it would have been but a small step to
the central conception of logarithms. But Napier does not
seem to have had any flashes of insight of this kind, and it
was only after many years of thought and labour that the idea
of logarithms dawned upon him. He compared numbers and
their logarithms with the sequences of terms in geometrical
and arithmetical progressions. He sent a preliminary state-
ment of his discovery to Tycho Brahe in 1594, but did not
make it public until 1614, when he described it in a book
Mirifici Logarithmorum Canonis Descriptio. This contained
laboriously calculated tables of what we should now call log
sines and log tangents. Napier’s ambition had been limited
to shortening trigonometrical calculations, and he had not
concerned himself with the operations of ordinary arithmetic.
The possibility of facilitating these was first realised by Briggs.
Thus while we must credit Napier with the discovery of the
general principle of logarithms, the credit for making them
into the everyday working tool of the mathematician must go
largely to Briggs. Between them, the two men gave a great
gift to the world of science.



CHAPTER VI

THE CENTURY OF GENIUS
(1601-1700)

HERE and there, in the history of human thought and action,
we find periods to which the epithet ‘great’ may properly be
applied—in Grecce the fourth century before Christ; in
England the Elizabethan age; in the domain of science the
seventeenth century, the ‘century of genius’, to which we
now come.

It would be very undiscerning to suppose that such a
period of greatness could arrive as a mere accident, a specially
brilliant galaxy of exceptional minds just happening to be
born at one particular epoch. Mental ability is believed to be
transmitted in accordance with the laws of heredity, in which
case the laws of probability will see to it that no abrupt jump
occurs from one generation to the next. Thus a period of
greatness must be attributed to environment rather than to
accident; if an age shows one particular form of greatness,
external conditions must have encouraged that form. For
instance, the sixteenth century was an age of great explorers
because conditions then specially favoured exploration; the
pioneering voyages of Columbus, Vasco da Gama, Cabot,
Magellan and others had drawn attention to the wealth of
new territory awaiting discovery, while men had learned to
build ships which could defy the worst fury of the ocean.

Perhaps the reasons which made the seventeenth century a
great scientific age were somewhat similar—a realisation that
vast virgin territories were awaiting exploration and develop-
ment, especially in the physical sciences where direct experi-
ment and observation were replacing a rapidly decaying faith
inauthority, and that the requisite tools were becoming available
astheywere needed ; for it had become evident that the unaided
human senses were inadequate to explore the deeper secrets
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of nature. Thanks to the Arabian physicists, to Roger Bacon
and others, the general principles of optics were well under-
stood; at the beginning of the century the microscope was
already in existence, the telescope was soon to come, and
other instruments followed in rapid succession. In mathe-
matics logarithms had just been discovered, with their power
to replace a lifetime of labour by a few hours of work.

The Church had almost withdrawn its age-long opposition
to the study of science. From the time of Anaxagoras on,
religion had been at the best unsympathetic, and more often
openly hostile, to science; in the Middle Ages it had been the
main brake on progress. Thought was then dominated by
religion to an extent which it is hard to imagine to-day. The
universe was regarded as a wheel of many spokes, but all
radiated outward from man and his earth, and all led in the
minds of most men to God and His heaven—or hell. Then
came the renaissance, dislodging men’s thoughts from their
accustomed groove, giving them a wider vision, including one
of a world in which Christianity had not even existed. Men
saw that the external world was worthy of study—to some
for its own sake, to others as evidence of the beneficence of
its Creator. The intense preoccupation with the details of
religion began to pass away, and science became free to find
the path to the truth by its own methods.

One indication of the new and more favourable position of
science was the foundation of scientific academies, many of
them national in their scope and enjoying royal patronage.
In the academies of antiquity learned men had been able to
discuss their problems with one another and with their
students. The medieval universities had been but poor sub-
stitutes for these, often being too much under the control of
the Church for science to be viewed with much favour. When
the sixteenth century brought its general revolt against
authority, the need was felt for some sort of meeting-place
where science could grow in a sympathetic soil, and be
assessed on its own merits.

JGPS b3
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It was in Italy that such feelings were first translated into
action. In 1560 the Accademia Secretorum Naturae was
founded in Naples, and a similar society, the Accademia dei
Lincei, existed in Rome from 1603 to 1630. Yet a third, the
Accademia del Cimento, was founded in Florence in 1657
under the patronage of the Grand Duke Ferdinand di Medici
and his brother Leopold, but survived only for ten years.

In England the need for such an organisation had been
voiced by Francis Bacon, Lord Verulam, in his Novum
Organum (1620) and partly, it is thought, because of his
writings, Charles II founded the ‘Royal Society for the Im-
provement of Natural Knowledge’ in 1662, to provide a
meeting ground for English men of science. Actually many
of them had already been meeting unofhcially and informally
from 1645 on—first at Gresham College in London under the
name of the Invisible College, then in Oxford during the civil
war, and then again in London—so that Charles did little
more than set the seal of royal approval on what was already
an accomplished fact.

In France the Académie des Sciences was founded by
Louis XIV in 1666. There was no corresponding move in
Germany until 1700, when the Elector Frederick of Prussia
founded the Berlin Academy, although there had been private
attempts to found such a society in Rostock as far back as
1619.

These societies had all the same central aim, the increase
of natural knowledge by means of free discussion, but their
activities took different forms in different countries.

The Italian academies seem to have become deeply involved
in the conflicts between science and orthodoxy. The Acca-
demia dei Lincei is said to have supported Galileo in his
rebellion against the ecclesiastical authorities (p. 176). The
Accademia del Cimento came to an end precisely when
Leopold was made a Cardinal of the Church, and many have
suspected that the two events were not unconnected; Leopold
may have paid for his Hat by the dissolution of a society
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which had become troublesome to the Church. One of its
members, Antonio Oliva, fell into the clutches of the In-
quisition, and killed himself to escape torture.*

The English and French academies were mainly concerned
with the development of utilitarian science, the study of
industrial arts, and the improvement of technical processes.
The French Academy expressed this in its title: ‘naturae
investigandae et perficiendis artibus.” And, although not
expressed in its title, this seems to have been the spirit of
the Royal Society also; even during its first informal meetings,
Boyle had written of ‘our new philosophical college that
values no knowledge but as it has a tendency to use’. The
Society’s Royal Patron and his advisers used to direct its
attention from time to time to the practical needs of the
country. We find him recommending its official experimenter,
Robert Hooke (p. 182), to study ‘the business of shipping’,
while Sir Joseph Williamson, Secretary of State, admonished
him to be diligent to study things of use." On the other side
of the picture, we read of Charles ‘laughing mightily at
Gresham College [the embryo Royal Society] for spending
time in weighing of air, and doing nothing else since they sat’.*

This was all in accord with the spirit of the age. Science,
which had hitherto been studied mainly for its intellectual
interest and for the gratification of curiosity by men who
loved it for its own sake, was now recognised as having a
definite utilitarian value. Bacon had written much about
‘science in the service of humanity’, while Boyle had com-
posed a whole treatise on The Usefulness of Experimental
Natural Philosophy (1663—71), in which he adduced the
flourishing trades of spectacle- and clock-making as the fruits
of the purely scientific researches of Huygens and Hooke.
Even astronomy was coming to be valued for its utility.

* Wolf, A History of Science, Technology and Philosophy in the Sixteenth
and Seventeenth Centuries, p. 55.
t G. N. Clark, Science and Social Welfare in the Age of Newton, p. 15.

* Pepys, Diary.
I1-2
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Earlier in the century Kepler had remarked that mother
astronomy would starve, did not her silly daughter astrology
earn bread for both. Now (1675) Charles II founded the
Royal Observatory at Greenwich ‘in order to the finding out
the longitude of places for perfecting navigation and astro-
nomy’. Science no doubt lost much through this shifting of
the emphasis from knowledge for its own sake to knowledge
for utility’s sake, but it also gained much through making a
wider and more intelligible appeal to the general mass of the
people.

Another favourable influcnce of a still more material kind
was the ever-increasing use of printing (p. 120), which not
only brought old knowledge within the reach of all, but also
made new knowledge immediately accessible to a wide circle.
Every man now stood directly on the shoulders of his pre-
decessors in a way which had been unknown in the past.

Such were the influences which surrounded the science of
the seventeenth century and helped it on its way. We must
now trace out the history of this progress in detail, again
beginning with astronomy, the science in which progress was
most spectacular.

ASTRONOMY

Our story of sixteenth-century astronomy ended with Tycho
Brahe the Dane, who lived only a short ten months into the
seventeenth century. We saw him, shortly before his death,
appointing the young German Johannes Kepler as his
assistant, and our study of seventeenth-century astronomy
may well begin with the life-work of this young assistant.
KEPLER (1571-1630). He was born on 277 December 1571,
at Weil near Stuttgart, being the son of a Protestant officer
in the service of the Duke of Brunswick. An active brain but
enfeebled body—for an attack of smallpox when a child had
left him with crippled hands and damaged eyesight—were
thought to indicate an ecclesiastical career. Thus he was sent
to the Monastic School of Maulbroun and the Protestant
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University of Tiibingen, where the Professor of Mathematics
and Astronomy, Michael Mistlin, convinced him of the truth
of the Copernican theories. Kepler now began to feel that
his views were too unorthodox for an ecclesiastical career, so
he obtained a lectureship in astronomy at Graz in Styria, but
abandoned this when a Catholic majority in Graz began to
persecute the Protestant minority.

At the early age of 24 he published a book, Prodromus
Dissertationum Cosmographicarum sew Mysterium Cosmographi-
cum, which contained a reasoned defence of the doctrines of
Copernicus, but was even more concerned with the views of
its writer. Pythagorean ideas as to the importance of integral
numbers were sweeping over intellectual Europe, and Kepler,
with a markedly mystical temperament, was especially suscep-
tible to such ideas. Like the Pythagoreans, he felt convinced
that God must have created the world after some simple
numerical pattern, and, like Plato before him, he tried to
discover simple numerical relations between the radii of the
planetary orbits. When he failed in this, he began to think
that the plan of the universe might
perhaps be geometrical rather than
arithmetical. His first idea was that
the planetary orbits might be spaced
likethe circlesin fig. 26, thusforming
inscribed and circumscribed circles
to a series of regular polygons.
When this idea too proved un-
workable, he tried replacing the
circles by spheres, and the polygons
by the five regular solids of the
Pythagoreans (Plate I). His joy was intense when he found
no discrepancies too large to be attributed to errors of
observation; the world, it seemed, had been built on a simple
geometrical pattern, and he declared that he would not barter
the glory of his discovery for the whole of the Kingdom of
Saxony.

Fig. 26.
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It was not so easy to arouse a similar enthusiasm in others.
Galileo praised the ingenuity of the book, but left it at that.
Tycho offered the chilling advice ‘first to try to lay a solid
foundation for his views in observation and then, building on
this, to try to reach the causes of things’. None the less,
Tycho must have appreciated Kepler’s intellectual powers,
for he invited him to Prague, first as a guest and then as an
assistant in the Observatory.

When Kepler accepted this appointment, he was at once
set to work on Tycho’s vast accumulation of planetary obser-
vations. Tycho must have hoped that these would confirm his
own anti-Copernican views (p. 135), while Kepler no doubt
cherished other hopes. Before the question was settled T'ycho
died, and Kepler, who succeeded to his position, became free
to devise a scheme on Copernican lines which would fit the
observations, and so provide a proof of Copernican doctrines.
But the best he could do left him with a discrepancy of 8" of
arc in the position of Mars, and this, he rightly judged, was
too large to attribute to errors of observation.

He now took a step of immense significance and daring.
From the days of Aristotle on, astronomy had been obsessed
by the idea that the circle was nature’s own curve, so that the
planets could move only in circles or in curves which were
built up of circles. This reduced astronomy to a perpetual
juggling with circles. In about 1080, the Spaniard Arzachel
(p- 109) had suggested that the planets might move in ellipses
rather than circles, but his conjecture had roused but little
interest. Now Kepler also managed to disentangle his
thoughts from the limitation to circular motion, and met with
the instant reward of a scheme which fitted all the observa-
tions perfectly. His book Astronomia nova (1609), which
announced the results of his labours, enunciated the two laws:

(1) The planet [Mars] moves in an ellipse which has the
sun at one of its foci.

(2) The line joining the sun to the planet sweeps out equal
areas in equal times.
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Nine years later (1618) Kepler published another book,
Epitome Astronomiae Copernicae, in which he extended these
laws to the other planets, to the moon, and to the four newly
discovered satellites of Jupiter (p. 173). In his Harmonices
Mundi (1619), he announced yet another law of planetary
motion, now commonly known as Kepler’s third law:

(3) The square of the time which any planet takes to
complete its orbit is proportional to the cube of its distance
from the sun.

These three laws covered all aspects of planetary motion.
"The first specifies the path in which a planet moves, while the
second specifies how it moves on this path, i.e. the way in
which the speed varies. As the planet moves nearer to the
sun, the sweeping arm—the line joining the sun to the planet
—becomes shorter, so that the planet must move faster to
sweep out areas at the same rate as before; the nearer a planet
is to the sun, the greater its speed in its orbit. The third law
informs us as to how the times compare which the different
planets require to complete their various orbits. For instance,
if one planet 4 is four times as far from the sun as a second
planet B, then the periodic time of 4 (i.e. A’s year) will be
eight times as great as that of B. But 4 has only four times
as far to travel as B, so that its average speed will be only half
of B’s. To take an actual case, Saturn’s orbit has g-54 times
the radius of the orbit of the earth. The ratio of the cubes of
these distances, namely, 868-3, must be the ratio of the squares
of the periodic times (the years) of the two planets. On taking
the square root of 868-3, we find that Saturn’s year must be
equal to 29} of our years. In general, the nearer a planet is to
the sun, the faster it moves.

These three laws of Kepler have been confirmed by in-
numerable observations. We know now that they are not
absolutely exact, but they are so exact that no error was found
in them for more than 200 years (p. 299). As they form one
of the great landmarks in the history of astronomy, let us
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pause for a moment to glance back over the road by which
they were reached.

The essential part of the story begins with Ptolemy’s
assuming that sun, moon and planets all moved in orbits
round the earth; Ptolemy thought that these orbits were
‘epicycles’ obtained by superposing one circular orbit on
another in the way already explained (p. 94). As the cen-
turies rolled on, and more accurate observations became
available, this scheme was seen to be inadequate. Then
Copernicus approached the problem with masses of medieval
observations, and supposed that the earth moved round the
sun. 'T'his made a great simplification possible, so that he was
able to fit the new observations with only thirty-four circles
in place of the previous eighty. Kepler next came with the
incomparably better observations of 'I'ycho, and found that
they could not be fitted into this scheme of Copernicus, which
he now tried to amend. Copernicus had hardly dared to
aspire to an accuracy of 10’ of arc, but Kepler rejected his
own first attempt because it showed an error of only 7% of
this. Success came when he tried replacing the age-old circles
by ellipses; seven ellipses could now account for the motion
of all seven bodies. The new scheme was so simple and so
convincing that the Aristotelian circles now dropped out of
astronomy for good. Since early Greek days, astronomers
had assumed that the planets must move in circles; Kepler
had now shown that they did not.

But in answering one question, Kepler had opened up
another: Why did the planets move in ellipses rather than in
any of the innumerable other curves that could be imagined?
In the past this question of ‘why’ could be answered by saying
that the circle was nature’s own curve; now that nature had
repudiated the circle, another type of answer seemed to be
called for. The question was to dominate astronomy until
Newton appeared and gave an answer which was not final but,
like Kepler’s answers to the question of ‘how’, seemed to be
final for about 200 years.
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Kepler himself gave some thought to the question of why,
but without any great success. Following Pythagoras, he had
thought in turn that the clue to the planetary orbits was to be
found in numbers, in polygons, and in solids. He now turned
to music. Using the Pythagorean relation between the lengths
of strings and the musical notes they produced, he represented
the motions of the planets in their orbits by a group of musical
notes—the harmony of the spheres (p. 60)—and the same
Harmonices Mundi which announced Kepler’s third law of
planetary motions also announced the chords which the
planets must sing as they moved in their paths round the sun.

But this led nowhere, and Kepler next turned to mechanics.
He still held the Aristotelian view that if a body was in motion,
something must be pushing it on from behind. So he assumed
that the sun was occupied by an ‘anima motrix’ (motive
force) which did the pushing. It emitted tentacle-like rays of
force which rotated with it,* like the spokes of a wheel, and
urged the planets on. In brief, Kepler replaced Aristotle’s
rotating ‘sphere of the fixed stars’ by a rotating sun.

This might explain circular orbits, but could not of itself
explain elliptical orbits; something more was needed for these.
Gilbert had suggested that the earth attracted the moon like
a magnet, and Kepler now pictured every planet as a magnet
of which the axis always pointed in the same direction, this
direction lying in the plane in which the planet moved round
the sun. Thus as a planet moved in its orbit, it was alternately
attracted and repelled by the sun, and Kepler thought that
this would cause alternate increases and decreases in the
distance of the planet from the sun—hence the elliptic orbits.

Kepler thought that similar forces might operate through-
out the universe, and to this extent he toyed with the idea of
universal gravitation, which he described as ‘a mutual affec-
tion between bodies, tending towards union or conjunction,
and similar in kind to magnetism’. In support, he instanced
the tendency of all bodies to fall earthwards—‘the earth

* There was so far no proof that the sun rotated.
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attracts a stone rather than a stone seeks the earth’—and the
tides of the ocean which, like Gilbert and many others, he
attributed to the moon’s attraction. He said that two stones
in empty space would attract one another, and would finally
meet at the point which we now call the centre of gravity of
the two. If the moon and the earth were not held in their
orbits by their ‘anima motrix’ or its equivalent, the earth
would rise to the moon through a fifty-fourth part of their
distance apart, while the moon would fall to the earth through
the other fifty-three parts. But Kepler never suggested, and
apparently never suspected, that this same gravity could keep
the moon and planets in their orbits without calling in an
‘anima motrix’ to supply a push.

Kepler’s second law had shown him that the nearer a
planet is to the sun, the faster it moves, and he interpreted
this as showing that the ‘anima motrix’ must be greatest at
small distances. He conjectured that its strength must fall off
as the inverse square of the distance, so that at double distance
its force would be only a quarter as strong. But he soon
abandoned this opinion, and decided that the force fell off as
the inverse distance, so that at double distance it would be
half as strong. The French astronomer Bouillaud disagreed
with this change, and argued for Kepler’s original law of the
inverse square,* and here the question stood until Newton
appeared on the scene—to show that the true law was that
of the inverse square, but that no ‘anima motrix’ was needed
beyond the sun’s gravitational pull.

EArRLY TELESCcOPIC ASTRONOMY

Meanwhile observational astronomy did not stand idle. In
the same year in which Kepler published his Astronomia nova
and the first two laws of planetary motion, Galileo made his
first telescope.

The first telescopes. The ultimate origin of the telescope is
hidden in some obscurity. Roger Bacon had vaguely ex-

* Astronomia Philolaica, Paris, 1645.
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plained the principles on which such an instrument might be
constructed (p. 116), but we do not hear of his ever trying to
make one. An English mathematician, Leonard Digges of
Oxford, is reported to have done so, and his son wrote of his
using it, but no astronomical discoveries or further activity
of any kind seems to have followed,* and the practical inven-
tion of the telescope, like that of the microscope, must be
attributed to the Dutch spectacle-makers. Early in the seven-
teenth century they were making telescopic instruments of
the opera-glass type, but treating them only as toys. Official
records at the Hague show that a patent for the making of
these instruments was granted to a certain Hans Lippershey
of Middelburg on 2 October 1608, and that a similar applica-
tion from a James Metius was considered on 17 October.
Descartes credits the invention of the telescope to Metius,
but Lippershey is generally supposed to have the better
claim. Like Jansen’s invention of the microscope, Lipper-
shey’s discovery is said to have been largely accidental; one
day he happened to turn a combination of lenses towards a
distant weather-vane, and was surprised to see it substantially
magnified.

As soon as Galileo heard of this, he saw its scientific
importance, and set about making such an optical glass for
himself.! By ‘sparing neither labour nor expense’, he had soon
constructed ‘an excellent instrument’ which magnified
objects about a thousand times in area, and so reduced their
apparent distances to about a thirtieth. In the next year
Kepler suggested a better arrangement of lenses,* and an
instrument embodying the improvement was constructed by
the Jesuit Scheiner. A few years later, Huygens (p. 210)
made still further improvements which brought the instru-
ment almost to its present form.

GALILEO. Hitherto Galileo had taken no great part in
astronomy, but he seems to have been sympathetic to

* Wolf, loc. cit. p. 75. t Sidereus Nuncius.
* Dioptrica, 1611.
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Copernican views, having been persuaded of their truth, some
say, by that same Mistlin who had converted Kepler. But as
soon as he had a telescope in his hands, he proceeded to make
discovery after discovery at breakneck speed. Turning it on
to the moon, he saw markings which he interpreted as shadows
cast by surface irregularities. ‘We have appearances quite
similar on the Earth about sunrise, when the valleys are not
yet flooded with light, but the mountains surrounding them
on the side opposite to the sun are already ablaze with the
splendour of his beams; and just as the shadows in the hollows
of the earth diminish in size as the sun rises higher, so these
spots on the moon lose their blackness as the illuminated part
grows larger and larger.” The moon, then, was a world like
our own, and the Aristotelians, who had asserted that it must
be a perfect sphere, had been wrong.

He next turned his telescope on to well-known areas of the
sky and saw vast multitudes of new stars. ‘Beyond the stars of
the sixth magnitude® you will behold through the telescope
a host of other stars, so numerous as to be almost beyond
belief.”* For instance, the Belt and Sword of Orion no longer
contained only nine stars but more than cighty, while the six
well-known stars of the Pleiades were increased to thirty-six
and more. The effect was even more marked in the Milky
Way. ‘Upon whatever part of it you direct the telescope,
straightway a vast crowd of stars presents itself to view; many
of them are tolerably large and extremely bright, but the
number of small ones is quite beyond determination.” ‘The
galaxy is nothing else but a mass of innumerable stars planted
together in clusters’, which is precisely what Anaxagoras and
Democritus had said 2000 years earlier.* Bruno, too, had been
right or nearly right; the number of stars was certainly very
great in number, and might well be infinite. Galileo next

* According to the classification of Hipparchus these are the faintest
stars which are visible to the naked eye, and so the faintest which could
be seen at all in pre-telescopic times.

t Sidereal Messenger, 1610.

¥ Aristotle, Meteorologica.
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turned the telescope on to Jupiter, and saw four satellites
circling round the great planet, just as Copernicus had
imagined the planets to circle round the still greater mass of
the sun. Probably, then, Copernicus had also been right,
since here was a miniature replica of the solar system as he
had imagined it to be. A study of Venus showed that it
passed through a sequence of ‘phases’ like those of the moon
—crescent, semicircle, full circle, semicircle, crescent again,
and so on indefinitely. This proved that Venus was not self-
luminous, but shone by light reflected from the sun. But it
showed more than this. For the Ptolemaic hypothesis re-
quired that Venus should never show more than a semicircle
of illuminated surface to the earth, whereas the Copernican
hypothesis demanded exactly the sequence of phases that
were actually seen. Thus this one observation of Galileo killed
the Ptolemaic hypothesis and established the Copernican for
all who could be convinced by visual proof. On 30 January
1610, Galileo wrote: ‘I am quite beside myself with wonder,
and infinitely grateful to God that it has pleased Him to
permit me to discover such great marvels.’

Later in the same year he observed the rings of Saturn, but
interpreted them wrongly, writing that Saturn consisted of
‘three spheres that almost touch one another’. He also made
observations on sunspots. Kepler had observed a dark spot
on the sun in 1607 without telescopic aid, but had thought it
was Mercury crossing the disk of the sun. Fabricius also had
observed sunspots, apparently before Galileo, and the Jesuit
Scheiner observed some in April 1611. At first he thought
they were an optical illusion but later, when he was convinced
of their reality, he saw that they proved that the sun must be
rotating, and gave a means of determining the period of this
rotation.

In 1613 Galileo published his Letters on the Solar Spots in
which he made no secret of his Copernican views, and in
consequence found himself charged with heresy. He tried to
defend himself by quoting scripture, but the ecclesiastical
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authorities warned him that he must abstain from theological
argument and confine himself to physical reasoning. Early in
1616 the matter was brought before the Inquisition, who
summoned a meeting of their consulting theologians on
19 February to advise on the two propositions:

(1) The sun is the centre of the world and altogether
stationary.

(2) The earth is not the centre of the world nor stationary,
but moves bodily with a diurnal motion.

The meeting unanimously pronounced the first proposition
to be ‘false and absurd in philosophy and formally heretical’,
and adjudged the second proposition ‘to deserve the like
censure in philosophy, and as regards theological truth to be
at least erroneous in faith’. On 25 February the Pope directed
Cardinal Bellarmine, the leading member of the Inquisition,
to summon Galileo and admonish him toabandon the opinion
which the meeting had condemned. If Galileo refused, he
was to be handed a formal injunction ordering him, under
pain of imprisonment, ‘to abstain from teaching or defending
this kind of doctrine and opinion, or from treating of it’.
Galileo was duly summoned and saw Bellarmine the next day
—with what precise results we do not know. But a decree
appeared a week later ordering the work of Copernicus to be
withdrawn from circulation until it had been corrected. The
book reappeared four years later, with ‘corrections’ on the
lines of those which Osiander had previously made—sugges-
tions that the earth’s motion was not absolute truth, but only
a hypothesis which facilitated calculations.

After a period of quiescence, Galileo published I/ Saggza—
tore (‘The Assayer’) in 1623, dedicating it to the new Pope
Urban VIII, who had been sufficiently sympathetic with
astronomy to write a poem celebrating Galileo’s discovery of
the satellites of Jupiter. He was apparently willing to turn a
blind eye to the various unorthodox tendencies of the book,
and the rift between religion and science, at least as repre-
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sented by the Pope and Galileo, might have been healed if
only Galileo could have let sleeping dogs lie. But it was not
in his temperament to do this, and in January 1632 he
published a Dialogue on the Two Chief World-Systems, the
Ptolemaic and the Copernican. Then the lightning struck.

In the book three characters meet to discuss the merits of
the two systems. One is, of course, a convinced Copernican,
another a violent anti-Copernican, steeped in the doctrines of
Aristotle, while the third claims to be an impartial onlooker
and commentator. Impartial comment was not in any case
Galileo’s strong suit, and least of all here, where he could
hardly see that there was any case beyond that of Copernicus
tocommenton. And he made the anti-Copernican desperately
stupid, and incapable of seeing the simplest of arguments.

Galileo’s writing of such a book was of course an open
defiance of the Pope’s admonition of 25 February 1616 to
abandon Copernican opinions, and even more so of the formal
injunction of 26 February, if this was ever handed to him.*
Nevertheless, Galileo had succeeded in obtaining a permit
for its publication from the Censor of the Holy Office, subject
to two conditions. The first was the old condition that the
motion of the earth was to be treated as a hypothesis and not
as a fact; the second was that the book should contain certain
arguments, to be supplied by the Pope, in favour of the
orthodox view. Galileo not only failed to comply with the
first condition but also, quite gratuitously, laid himself open

* Some authorities have maintained that the injunction was not handed
to Galileo, and even that the whole episode of the admonition and
injunction is a fabrication, trumped up at a later date to provide an excuse
for the proceedings of 1633 (see especially Emil Wohlwill, Der Inquisitions-
process des Galileo Galilei, Berlin, 1870). Galileo’s own statement was:
‘There was published some years since in Rome a salutiferous Edict that,
for the obviating of the dangerous scandals of the present age, imposed
a seasonable Silence upon the Pythagorean Opinion of the Mobility of the
Earth. ...I was at that time in Rome; and not only had the Audiences but
Applause of the most eminent Prelates of that Court; nor was that Decree
published without previous Notice given me thereof’ (Galileo, Dialogue
on the Two Chief World-Systems, translation by Salusbury, 1661).
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to further trouble by the way in which he complied with the
second. For he put the Pope’s arguments into the mouth of
his very stupid anti-Copernican character.

The sunspot-observing Jesuit Scheiner, with whom
Galilco was already on bad terms, owing to a dispute as to
priority in the discovery of sunspots, seized this opportunity
of making mischief, and asserted that the half-wit was in-
tended for a pen-portrait of His Holiness. In August 1632
the sale of Galileo’s book was forbidden, and a com-
mission was appointed to report upon it. They reported
unfavourably, and Galileo was summoned to appear before
the Inquisition.

He arrived in February 1633, and was at once put under
detention, although he appears to have been treated with
great consideration and with every courtesy. Two months later
he was examined and is said to have been threatened with
torture, although it is also said that there was no intention of
putting the threat into execution. In June sentence was pro-
nounced-—Galileo was to do penance for three years and to
make a recantation in penitential garb of all Copernican
doctrines. In this recantation he was not only to state his
present beliefs, but also to predict what he would believe for
the rest of his life: ‘I, ..., give assurance that I believe, and
always will believe, what the Church recognises and teaches
as true.” There is no reason for accepting the highly improb-
able story that Galileo ended his recantation with the muttered
words ‘E pur si muove’ (‘And yet it moves’). It is the kind
of thing Galileo would have said, but hardly the kind of
occasion he would have chosen for saying it.*

After another period of detention, he was allowed to move
to Arcetri, outside Florence, where he continued to work on
scientific problems, although these were now of a non-
controversial kind. Here in 1637 he discovered the ‘librations’
of the moon—the small oscillations of the moon which result

* So far as is known, this story first appeared in 1761, in the Abbé
Irailli’s Querelles littéraires.
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in its showing slightly different parts of its surfaces to the
earth in successive lunar months.

He also gave thought to methods for enabling a ship to
determine its position when out of sight of land. The problem
had not arisen for ancient or medieval navigation, because
this had consisted of little more than ‘hugging the coast’, but
with the discovery of the New World other methods were
called for. A ship can find its latitude very easily by noting
the greatest elevation reached by the sun, but the determina-
tion of its longitude presents a far more difficult problem. In
1598 Philip III of Spain offered a prize of 100,000 crowns for
a method of fixing a ship’s position when it was out of sight
of land, and the Dutch soon followed it with a similar offer.

There is a solution which is simple enough in principle.
When we say that a ship’s position is 60° west of Greenwich,
we mean that noon occurs there four hours later than at
Greenwich.* If, then, a clock showing Greenwich time was
available on the ship, the latitude of its position could be
found at once by noting the time which this clock showed at
local noon, i.e. when the sun was at its highest. The modern
ship must carry chronometers which show Greenwich time
throughout the voyage, and may receive Greenwich time by
radio signals, but no such methods were available to seven-
teenth-century navigators, who were often 200-300 miles
from their estimated positions, and frequently lost their ships
as a result.!

Galileo pointed out that time-tables of the motion and
eclipses of Jupiter’s satellites could be prepared in advance,
and that to a navigator provided with such tables, the
system of Jupiter would provide the needed clock from
which a standard time could be read and the longitude of a
ship’s position determined. The method was hardly used,
because it was soon found that the motion of the moon across

* Because 60° is a sixth of a circle, and four hours is a sixth of a day,
the position is one-sixth of the way round the world from Greenwich.
t Sir H. Spencer Jones, The Royal Observatory, Greenwich, 1944.
JGPS 12
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the sky provided a still better clock; the mariner can tell the
standard time at any moment by noting the position of the
moon relative to the nearest stars—in principle it is as simple
as reading the hands of a watch.

Galileo became blind in 1637—as some think from observ-
ing the sun without adequate protection for his eyes—and his
life’s work was at an end. He died in 1642, the year of the
birth of Newton, who was to extend and give a wider signifi-
cance to his labours.

Just as Galileo’s earlier work in mechanics had shattered
the Aristotelian physics, so his later work in astronomy had
shattered the Aristotelian cosmology. By the beginning of
1610 he had observed the phases of Venus, the orbital motion
of Jupiter’s satellites, and the uncountable stars of the Milky
Way, while Kepler had enunciated his first two laws of
planetary motion. The main scheme of the universe was now
clearly established, and it was obvious that the final victory
could only rest with Copernicus, Bruno and Galileo.

DESCARTES’ VORTICES

DESCARTES (1596-1650). The next important step—im-
portant though retrograde—was taken by Réné Descartes the
philosopher, whom we have already met as one of the founders
of analytical geometry. He was born near Tours of a good
family, was educated at the Jesuit school of La Fléche where
he showed himself exceptionally brilliant at mathematics, and
then studied mathematics for two years with Mersenne, the
famous Parisian mathematician. After a brief period in the
army of Prince Maurice of Orange, he resigned his commission
at the age of 25 to devote the rest of his life to mathematics
and philosophy.*

* While he was stationed at Breda, he noticed a placard in the street
written in Dutch, and asked a passer-by to translate it to him. It proved
to contain a mathematical problem and a challenge to all the mathema-
ticians of the world to solve it. The stranger, who was Beeckman, principal

of the college of Dort, had said he would provide the translation if
Descartes would undertake to provide the solution. This Descartes did
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After a time of travel, he settled down in Holland, and
worked for five years on a book Le Monde, which aspired to
give a complete outline of science as well as a complete theory
of the physical universe; he was still young and was not a
modest man. As this book was approaching completion in
1633, he heard of Galileo’s condemnation. He explained*®
that, although he had noticed nothing in Galileo’s doctrines
which had seemed to him prejudicial either to religion or to
the state, he now began to feel anxious about some of his own
doctrines, and so decided not to publish his book. Actually
others published it, still in an unfinished state, in 1664—
14 years after his death. But he gave a brief account of his
conclusions in his Discours de la Méthode (1637), and a fuller
exposition of his views in his Principia Philosophiae (1644).

These conclusions were valueless but Descartes’ theory is
of interest as being the first attempt to explain the universe
on purely mechanical lines. Itis the theory of a philosopher
rather than of a scientist, being based on general principles,
contemplation and conjecture rather than on experiment.
For instance, he condemns Galileo’s experiments with the
comment that ‘everything that Galileo says about the philo-
sophy of bodies falling in empty space is built without
foundation; he ought first to have determined the nature of
weight’.

He followed Galileo in dividing the qualities of substances
into two groups, which he called primary and secondary. The
secondary qualities are the hardness or softness, the sweetness
or acidity, and so on, that need senses to perceive them (or so
Descartes thought), while the primary qualities are those
which exist in their own right, whether they are perceived or
not. Descartes says there are only two primary qualities—
extension in space and motion—so that nothing has any real

within a few houts, and the evidence of his mathematical powers is said
to have encouraged him to return to the mathematical pursuits of his
earlier days.

* Discours de la Méthode, Part v1, 1637.

I2-2
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objective significance except these: ‘give me extension and
motion, and I will construct the world.’

He proceeds to argue that, as extension is the fundamental
property of matter, extension without matter is unthinkable
—a strange argument for a philosopher who claimed to accept
nothing that could not be established with certainty.* Thus
all space must be occupied by matter of some kind or other;
‘a vacuum or space in which there is absolutely no body is
repugnant to reason’. He accordingly imagines that all those
parts of space which are not occupied by the solid matter of
our experience are occupied by other ‘primary’ matter con-
sisting of very fine particles which make no impression on our
senses.

When a fish swims through the sea it pushes particles of
water away from in front of itself, while other particles close
in from behind to fill the gap vacated by the fish, so that the
water moves round and round in closed circuits. ‘All natural
motions are in some way circular.” In the same way, Descartes
thought, when ordinary gross matter pushes its way through
the sea of particles, this must move in closed circuits, and so
may be pictured as a series of vortices.

On this foundation, Descartes built his famous theory of
vortices. The vortices were whirlpools in a sea of particles;
ordinary material objects were like floating corks which re-
vealed how the currents were flowing in the whirlpools. The
finest particles of all, which were rubbings or filings from the
coarser kinds, were drawn towards the centres of the vortices.
The planets were corks caught in the whirlpool of the sun and
whirled round its centre, while a falling leaf was a smaller
cork being drawn towards the centre of the earth’s whirlpool.
In a later elaboration, there was supposed to be so much
agitation at the centre of a large whirlpool that objects became
luminous; this explained why the sun and the stars shone.

* Principia Philosophiae, Part 11, § 15. A parallel argument would be
that as motion is the fundamental property of a locomotive, ergo motion
without a locomotive is unthinkable.
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This system attained to a vogue out of all proportion to its
scientific merits, partly no doubt because it was easy to
visualise and so seemed easy to understand. But it made no
attempt to explain quantitative laws, such as Kepler’s laws of
motion, and showed no capacity for surviving such tests when
applied by others—as Newton very conclusively demon-
strated.* Nevertheless, this theory of Descartes held the field,
and was indeed the best that science had to offer, until it was
superseded by the incomparably better theory of universal
gravitation, to which we now turn.

UNIVERSAL GRAVITATION

We have scen (p. 169) how Kepler toyed with the idea of
universal gravitation, but had no suspicion that forces of
gravity alone might explain the motions of the plancts;
indeed, he thought that these could not maintain their orbital
motions unless some force was continually pushing them on
from behind. Actually, of course, a planet’s motion is main-
tained by its own momentum. What was needed to explain
the observed facts was not a pushing force to keep the planet
continually moving on, but an attractive force which would
continually change the direction of motion of the planet, and
so prevent it running away in a straight line from the sun.

The general principle involved had been stated very clearly
by Plutarch 1400 years before Kepler was born, although with
special reference to the moon’s motion round the earth. IHe
had written: “I'he moon is secured against falling [on to the
earth] by her motion and the swing of her revolution—just as
objects put in slings are prevented from falling by the circular
whirl’*—and it was only necessary to discover what played
the part of the sling.

In 1666 no fewer than three people took up the problem
almost simultaneously; in alphabetical order they were
Borelli, Hooke and Newton.

* Principia, 11. t De Facie in Orbe Lunae.
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BORELLI. Borelli, who was Professor of Mathematics in
Galileo’s old University of Pisa, published a book* in which
he said that a planet moving in a circular orbit round the sun
had a tendency to recede from the sun and, like Plutarch
before him, he compared the motion with that of a stone in a
sling. He argued that as a planet does not in actual fact
recede from the sun, there must be some force drawing it
towards the sun; when the attractive tendency of this force
is just equal to the recessive tendency caused by the motion,
then equilibrium is established, and the planet will revolve
continually round the sun at a definite distance from it. It
was the first time that the mechanics of the problem had been
accurately stated since the time of Plutarch.

HOOKE (1635-1703). The same thing was being said in
England at almost the same time by Robert Hooke, who was
both an acute thinker and an ingenious experimenter. After
being employed as research assistant from 1655 to 1662 by
Robert Boyle, whom we shall meet later (p. 213), he was
engaged as Curator of the newly founded Royal Society, his
duty being to carry out experiments suggested either by his
own fertile brain or by the other Fellows. In a paper dated
23 May 1660, he discussed how the path of a celestial body
could be bent into a circle or ellipse, and considered that it
might be through ‘an attractive property of the body placed
in the centre [of the orbit] whereby it continually endeavours
to attract or draw it [i.e. the celestial body] to itself’. Hooke
says that if such a force is granted, then ‘all the phenomena
of the planets seem possible to be explained by the common
principles of mechanic motion’.

In another paper published eight years later, he attempted
to ‘explain a system of the world differing in many particulars
from any yet known, but answering in all things to the com-
mon rules of mechanical motions. This depends upon three

* Theoricae Mediceorum Planetarum (1666). This dealt primarily with

the motion of Jupiter’s satellites, which Galileo had called the Medicean
planets.
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suppositions.” The first supposition is simply universal gravi-
tation. ‘The second is that all bodies whatsoever continue to
move forward in a straight line until they are deflected by
some effectual powers, and sent into a circle, ellipse, or other
more complicated curve. The third supposition is that these
forces are strongest at short distances, and fall off in strength
as the distance is increased.’

Here Hooke accurately enunciates the mechanical prin-
ciples which govern the motions of the planets, and suggests
a universal force of gravitation. He does not say how the
force must vary with the distance if it is to result in the
planets moving in the ellipses that are actually observed. Five
year later (1679) he wrote to Newton that if the force varied
as the inverse square of the distance, then the orbit of an
object projected from the earth’s surface would be an ellipse,
having one focus at the centre of the earth.* The theory of
planetary motions and of universal gravitation was now almost
complete, but it needed the genius of Newton to weld it into
a consistent whole, and to establish that the mysterious force
that kept the planets moving in their orbits round the sun
was identical with the familiar force which caused an apple to
fall to the earth.

NEWTON (1642-1727). Isaac Newton was born prema-
turely on Christmas Day, 1642, at the Manor House of
Woolsthorpe, near Grantham, in Lincolnshire, being the
posthumous son of a yeoman farmer who was Lord of the
Manor of Woolsthorpe. He was so small at birth that his
mother said she could have put him in a quart pot, and so
lacking in vitality that the two women who went to fetch a
‘tonic medicine’ for the poor child were surprised to find him
still alive when they returned.

In due course he was sent to school at Grantham. He did
not make a good pupil, being inattentive, according to his
own statement, and standing low in his class. But he showed
a certain mechanical aptitude in his play, devising ingenious

* Brewster’s Memoirs of Sir Isaac Newton, 1, 287.
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ways of measuring the speed of the wind, making clocks,
sundials and a working model of a windmill, and designing
a carriage which was to go when its occupant turned a
handle.

When he was 13 his mother lost her second husband, and
Newton was called home to help on the farm. But it soon
became clear that his interests lay elsewhere, and he gave
more thought to mechanical problems than to agriculture.
Finally, it was decided that he would never make a good
farmer, and so he might try to be a scholar. He was sent to
Trinity College, Cambridge, the college where his uncle had
been educated, probably entering in June 1661.

There is no evidence that he was specially interested in
science at this time, or that he specially impressed the College
authorities by his ability. A book on astrology seems to have
been more effective than they in awakening his interest in
science. For in it he found a geometrical diagram which he
could not understand, and he then bought a ‘Euclid’ and set
to work to learn geometry. Having mastered this book with
case, he went on to study the far more difficult ‘Geometry’
of Descartes, which seems to have given him a real interest in
mathematics and a taste for science.

In the summers of 1665 and 1666 England was ravaged by
the plague, and the Cambridge students were sent home to
avoid infection. In the quiet of Woolsthorpe, Newton found
leisure to ponder over many of the scientific problems of the
day, and made good progress towards the solutions of many
of them. Writing of this some 50 years later,* he says: ‘In the
beginning of the year 1665, I found the method for approxi-
mating series, and the rule for reducing any dignity [i.e. any
power] of any binomial to such a series.'! The same year in
May I found the method of tangents of Gregory and Slusius,

* In a MS. quoted in the preface to A Catalogue of the Newton MSS.,
Portsmouth Collection (Cambridge, 1888), p. xviii. This MS. was probably
written in or about the year 1716.

t This is the famous ‘ binomial theorem’, see p. 225 below.
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and in November had the direct method of fluxions,* and the
next year in January had the theory of colours, and in May
following, I had entrance into the inverse method of fluxions
[i.e. the intcgral calculus], and in the same year [1666] I began
to think of gravity extending to the orb of the moon, and...
from Kepler’s Rule of the periodic times of the planets, I
deduced that the forces which keep the planets in their orbits
must be reciprocally as the squares of their distances from
the centres about which they revolve; and thereby compared
the fqpce requisite to keep the moon in her orbit with the
force of gravity at the surface of the carth, and found them
answer pretty nearly. All this was in the two plague years of
1665 and 1666, for in those days I was in the prime of my age
for invention, and minded mathematics and philosophy more
than at any time since.” Thus before he was 24 years old, he
had already thought out a programme for a large part of his
life’s work.

Returning to Cambridge, he was elected a Fellow of his
College in 16677. T'wo years later, the then Lucasian Professor
of Mathematics in the University, Isaac Barrow (1630-77),
who was himself no mean mathematician, resigned his chair
for the express purpose of making a vacancy for Newton.
When Newton was duly elected, he became free to devote the
whole of his time to science.

He worked quietly in Cambridge until 1689, when he was
elected Member of Parliament for the University. But this
particular Parliament only lasted for 13 months, so that the
next year he was back in Cambridge. In 1696 he moved
permanently to London, having been appointed Warden of
the Mint; he was promoted to the Mastership three years
later.

All accounts agree that Newton made a highly competent
Master of the Mint, and it was largely through his efforts
that the English currency was put on a satisfactory basis at a

* This is the differential calculus, the most famous and the most
important of Newton’s mathematical discoveries.
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difficult time. He noticed a relation between prices and the
amount of money in circulation, which was subsequently
formalised in the so-called ‘quantity theory’ of money—if
the amount of currency in circulation is doubled, other things
remaining the same, then prices also (in terms of currency)
will approximately double. It is a simple application in the
economic field of the well-known principle that it is impos-
sible to get something for nothing, but apparently it needed
a Newton to find it. There is an obvious comparison with
Copernicus, who advised the Polish government on currency
questions (p. 125), and in doing so discovered another im-
portant currency law, which is usually known as Gresham’s
Law: ‘When bad money is recognised as legal tender, good
money is driven out of circulation.” Copernicus seems clearly
to have anticipated Gresham in the formulation of this law, but
it is equally clear that Oresme (p. 118) anticipated Copernicus.
It is strange that so many of the world’s astronomers
should have been intimately mixed up with the problems of
filthy lucre.

Newton'’s acceptance of office in the Mint virtually ended
his original work in science, but he was elected President of
the Royal Society in 1703, and every year afterwards until his
death. He died on 20 March 1727, after two or three years of
failing health.

The quotation given above (p. 185) shows that he had
thought out the main lines of his famous theory of gravitation
by 1666. Others, as we have seen, were thinking or had
thought along the same lines, but Newton did one thing
which others had not done; he applied a numerical test, and
found that the result came out right, or ‘pretty nearly’
right.

The principle of this test is simple. If the sun’s attractive
force were suddenly to fail when a planet was at P (fig. 27),
the planet would no longer follow the circle PR, but would
begin to move along the straight line PQ, and after a second
of time would reach some point Q on this line. Actually the
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sun’s force pulls it down to some point R on the circular
orbit, so that in one second it falls sunward through a distance
OR. Now suppose that the orbit of this planet is four times
the size of the orbit of the earth. Kepler’s third law (p. 167)
tells us that the planet will take eight times as long as the earth
to get round its orbit, so that the dis- Q P

tance QP which it covers in one second

will be half as great as for the earth.

But QT, which is approximately the

diameter of the orbit, is four times as

big as for the earth, so that QR, which

is known to be equal to QP%/QT, will

be one-sixteenth as great as for the

earth. Thus the pull of the sun on a . T
planet which is at four times the Fig. 27.

earth’s distance, must be only a sixteenth of the pull at the
earth’s distance. It can be shown in the same way that the
pull at z times the earth’s distance will be 1/n? times the
pull at the distance of the earth. This is the famous law of the
inverse square.

Newton might have enunciated this law, and brought for-
ward every planet which conformed to Kepler’s law-—as they
all did—in confirmation. But he did not do this because he
wanted to go farther and show that the force of gravitation
which kept the planets in their orbits was identical with the
familiar ‘gravity” which caused a stone or apple to fall to the
ground. His niece Catharine Barton told both Voltaire and
Martin Folkes, the President of the Royal Society, that it
was the fall of an apple in the orchard at Woolsthorpe that
first put this train of ideas into Newton’s mind, while
Newton’s friend Stukeley records that he was told by Newton
himself that the fall of an apple had first put the notion of
gravitation into his mind.*

Newton knew that the earth’s gravitation caused terrestrial

* Stukeley’s Memoirs of Sir Isaac Newton’s Life (ed. by A. H. White,
1936), p. 19.
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objects to fall 16 feet towards the earth’s centre in one second.
If Newton’s conjecture were saund, the moon, being 60 times
as distant from the earth’s centre, would fall only 5455th part
of 16 feet in a sccond. Newton tried to calculate how far the
moon actually did fall, and found that the result agreed
‘pretty nearly’ with that demanded by his theory. But
apparently the agreement did not satisfy him, and he con-
jectured that the moon might be kept in her orbit by a
combination of gravity and the vortices of Descartes. He
now put his calculations aside and did not return to them for
20 years.

We may well wonder why Newton’s calculations did not
agree better than ‘pretty nearly’. His friend Pemberton says
that, ‘being absent from books’ at Woolsthorpe, he used a
wrong value for the radius of the earth, which would of
course give a wrong value for the 6o-times larger orbit of the
moon. Ie may, as Pemberton thinks, have confused English
miles with nautical miles; or he may have taken a wrong
value from a book he is known to have possessed, which gave
the degree as only 66 miles. Yet another alternative is that he
was not sure what the earth’s gravitational attraction would
be on a nearby object such as a falling apple. In 1685 he
proved that it would be the same as though all the earth’s
substance were concentrated at its centre; knowing this, and
now using a correct value for the radius of the earth, he
found that his calculations agreed perfectly with observation.
But in 1666 he could obtain no such agrecment, and was
content simply to let the matter drop. Perhaps his fertile
mind had become more interested in some other problem.

Near the end of 1679 he wrote to Hooke saying, among
other things, that he had for some years been trying to ‘bend
himself from philosophy to other studies’ because he
grudged the time this took ‘except perhaps at idle hours
sometimes as a diversion’. We do not know what was
now claiming his attention. It may perhaps have been
theology, a taste for which grew upon him with advancing
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years.* Or it may have been chemistry, to which he gave an
amount of time out of all proportion to his achievements in
the subject.

In this letter he remarked that if the earth were rotating, a
falling object would be carried a little eastward in the course
of its fall, and suggested that a proof of the earth’s rotation
might be obtained by dropping a body from a height and
noting where it struck the ground. Early in 1680 Hooke
replied that he had performed the experiment and had ob-
tained the expected result, and then went on to ask Newton
what would be the exact path of a falling object which was
attracted to the earth by a force which varied as the inverse

* Newton’s tastes and interests all seem to have been of an intensely
serious kind. He must have been quite devoid of humour and seldom
laughed or joked. In the only known instance of his laughing (recorded
twice, see Brewster’s Memoirs, 11, 91) Newton did not laugh with a friend,
but at him—because he could not sce the use of learning Euclid. The
catalogues of Newton’s books and furniture made after his death suggest
that he had no pleasure or interest in art, music, literature or poetry
(Villamil, Newton the Man), and he appears to have been equally un-
interested in country life, animals, cxercise, sports and games, both
indoor and outdoor. He was ultra-careless about his dress and food. He
never married, and one boy-and-girl affair seems to have been the sum
total of his interest in the other sex. It may be that his intense intellectual
efforts left him with but little mental energy for more human interests,
and often with but little even for his science.

t His amanuensis, Humphrey Newton, wrote (Brewster’s Memoirs, 11,
93) that ‘at spring and the fall of the leaf. . .he used to employ about six
weeks in his laboratory, the fire scarcely going out either day or night, he
sitting up one night, and I another, till he had finished his chemical
experiments, in the performances of which he was the most accurate,
strict, exact. What his aim might be, I was not able to penetrate into, but
his pains, his diligence at these set times made me think he aimed at
something beyond the reach of human art and industry.’ ‘He would
sometimes, tho’ very seldom, look into an old mouldy book which lay in
his laboratory, I think it was titled Agricola de Metallis, the transmuting
of metals being his chief design.” All the time and energy which Newton
gave to these subjects led only to insignificant results: he published
nothing original in chemistry, and had no success that we know of in his
alchemy—if he really was as interested in these questions, as his amanuen-
sis seems to have thought. (For a discussion of Newton’s work and
interest in chemistry, see Douglas McKie, ‘Some notes on Newton’s
chemical philosophy’, Phil. Mag. Dec. 1942.)
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square of the distance. Newton says, in a letter written to
Halley in 1686, that he looked into the problem to satisfy his
own curiosity, and found that the path would be an ellipse
having the centre of attraction at one of its foci—exactly the
type of path in which Kepler had found the planets to move
round the sun. He then ‘threw the calculation by, being upon
other studies’, and left Hooke’s letter unanswered.

Four years later (January 1684), Hooke, Halley the astro-
nomer (p. 195) and Sir Christopher Wren, the astronomer
and architect, met in London. They had all reached the
conclusion, although for different reasons, that the true law
of gravitation must be that of the inverse square, a conclusion
which Newton had reached as far back as 1666 (p. 185), as a
deduction from Kepler’s third law, but a further test remained;
if the planets moved round the sun under the attraction of
such a force, would they move in ellipses, as Kepler first
asserted that they did? Halley undertook to go to Cambridge
and consult Newton on the question. When they met, Newton
at once said the paths would be ellipses, and explained that he
had worked the problem out some years before but had mis-
laid his calculations; for the second time, then, he had held
the solution of a large part of the problem of the astronomical
universe in his hands, and had been content to let it slip out.
This time, however, he promised to restore the lost calcula-
tions, and not only did this but also, urged by Halley, he
wrote out his results for the Royal Society.

In due course the manuscript was published under the
title Philosophiae Naturalis Principia Mathematica, which is
generally abbreviated to the Principia. This is certainly the
greatest scientific work ever produced by the human intellect;
no other, with the possible exception of Darwin’s Origin of
Species, has had so great an influence on contemporary
thought. For it explained a large part of inanimate nature
in mechanical terms, and suggested that the remainder
might admit of explanation in a similar way. The key to
the explanation was of course the law of universal gravita-
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BS, & in loco € fecondum lincam ipfi 4D paraliclam, hoc eft
fecundum lineam C S, 8c. Agit ergo femper fecundum lineas
tendentes ad pun&tum illud immobile S. 0. E. D.
Cas. 2. Et, per Legum Corollariumquintum, perinde eft five
uiefcat fuperficies in qua corpus defcribit figuram curvilineam,
2ve moveatur eadem una cum corpore,figura defcripra & punéto
fuo S uniformiter in dirc@um. .

Scholium.

* Urgeri poteft corpus a vi centripeta compofita ex pluribus
viribus In hoc cafu lenfus Propofitionis eft, quod vis illa qua ex
omnibus componitur, tendit ad pun&tum $. Porro fi vis aliqua
agat fecundum lineam fuperficici defcriptz perpendicularem, hec
faciet corpus defletere a plano fui motus, fed quantitatem fuperfi-
ciei defcriptz nec augebit nec minuet, 8 propterea in compofi-
tione virium negligenda eft.

Prop. II] Tbc;)r. HI.

Corpns omef‘,nd, radio ad cextrim corporis akering stcrng; woti
dutlo, defcribit areas circa centram illud temporibus proportionales,
wrgetar vi compofita ex vi comiripeta tendente ad corpus’ berum
& ex v omni acceleratrice, qua mrpa&f'&‘b:run_‘rmga«r.
Nam('per Legum Corol. 6.) fi vi nova, qua zqualis & contraria

fit illi qua corpusalterumfurgcmr, urgeatur corpus utrumgs fe-

cundum lineas parallclas, perget corpus primum defcribere circa
corpus alterum areas eafdem ac prius: vis autem qua cor-

s alterum'urgebatur, jam defltruecur per vim fibi zqualem &

contrariam, & prepterea ( per Leg. 1. ) corpus illud alterum

vel quiclcet vel movebitur uniformiter in directum, 8 corpus
primum, urgente differentia viriam, perget'areas temporibus prq-

rtionales circa corpus alterum' defcribere.  Tenditigitur. ( per
l}(;lt‘or. 2.) differentia virium ad cospus illud alterum™ut cin-
teum. Q. E. D, Co-

A page from Newton’s Principia

Newton’s presentation copy to John Locke, showing corrections

in his own handwriting
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tion. The whole investigation is a perfect example of the
true scientific method as described by Leonardo (p. 123). In
the preface, Newton explains that the ‘forces of gravitation
with which bodies tend to the sun and the several planets’
can be discovered ‘from the celestial phenomena’. Having
discovered what these forces are, he next deduces, by mathe-
matical analysis, ‘the motions of the planets, the comets, the
moon and the sea’ (Newton is here thinking of the tides). He
continues: ‘I wish we could derive the rest of the phenomena
of nature by the same kind of reasoning from mechanical
principles; for I am induced by many reasons to suspect that
they all depend upon certain forces by which the particles of
bodies, by causes hitherto unknown, are either mutually im-
pelled towards each other and cohere in regular figures, or
are repelled and recede from each other; which forces being
unknown, philosophers have hitherto attempted the search
of nature in vain.’

In accord with this plan, the first book inquires how the
motion of bodies acted upon by known forces can be in-
vestigated mathematically. Galileo’s experiments had dis-
closed the relation of motion to force, and Newton takes
Galileo’s mechanical system over complete, expressing it in
the first two of his three ‘Axioms or Laws of Motion’.

Law 1. Every body preserves in its state of rest or of
uniform motion in a straight line, unless it is compelled to
change that state by impressed forces.

Law II. Change of motion (i.e. rate of change of momen-
tum) is proportional to the motive force impressed, and takes
place in the direction in which such force is impressed.

Bef